首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
admin
2019-03-23
85
问题
讨论a,b为何值时,方程组
无解?有解?有解时写出全部解。
选项
答案
用初等行变换把增广矩阵化为行阶梯形矩阵,即 [*] 可见,当a≠1时,R(A)≠R(A,b),方程组无解。 当a=1且b≠—1时,R(A)=R(A,b)=3,方程组有唯一解,由 [*] 得唯一解为x
1
=3,x
2
=1,x
3
=0。 当a=1且b= —1时,R(A)=R(A,b)=2<3,方程组有无穷多解。由 [*] 得同解方程组为 [*] 选x
3
为自由变量,对应的齐次线性方程组的基础解系为ξ=(—1,1,1)
T
,方程组的一个特解为η=(3,1,0)
T
,所以方程组的通解为x=η+kξ,其中k为任意常数。
解析
本题主要考查的是非齐次线性方程组解的判定。对于方程中含有参数的非齐次线性方程组解的判定问题,可以用系数矩阵的行列式或增广矩阵的秩来判定,而本题中系数矩阵无法求行列式,所以应该用增广矩阵的秩进行判定。若求通解只需求出一个基础解系及特解。
转载请注明原文地址:https://kaotiyun.com/show/EXV4777K
0
考研数学二
相关试题推荐
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设3阶矩阵A=,A-1XA=XA+2A,求X.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
已知齐次方程组(Ⅰ)解都满足方程x1+x2+x3=0,求a和方程组的通解.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
阅读舒婷《神女峰》一诗:在向你挥舞的各色花帕中是谁的手突然收回紧紧捂住了自己的眼睛当人们四散离去,谁还站在船尾衣裙漫飞,如翻涌不息的云江涛高一声低一声美丽的梦留下美丽的忧伤人间天上,代代相传但是,心真能变成石头吗为眺望远天的杳鹤
关于输卵管通畅试验。以下哪项错误
A.转胞B.子病C.子晕D.子淋E.子烦妊娠小便不通又称
下列哪些犯罪应当数罪并罚?()
基金募集申请经()核准后,方可发售基金份额。
对于符合贷款条件的客户,如其资金周转存在一定的周期性,在准确把握其还款能力的基础上,也可以选择按月还息、按计划表还本的还款方式,但此种还款方式下的借款人必须在贷款发生后的第()个月开始偿还首笔贷款本金。
两年前甲的年龄是乙的两倍,五年前乙的年龄是丙的三分之一,丙今年11岁,问今年甲多少岁?
Андрейвспомнил,как_____былонкматери,думаявсегдаосебе.
Honestynolongerseemstobethebestpolicywithtellingofliesbecomingacommonpartofourdailylives.Anewresearchby
A、Employerandemployee.B、Teacherandstudent.C、Sellerandcustomer.D、Interviewerandinterviewee.D本题考查推理判断的能力。题目询问说话者之间是什么关
最新回复
(
0
)