首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
admin
2019-03-23
93
问题
讨论a,b为何值时,方程组
无解?有解?有解时写出全部解。
选项
答案
用初等行变换把增广矩阵化为行阶梯形矩阵,即 [*] 可见,当a≠1时,R(A)≠R(A,b),方程组无解。 当a=1且b≠—1时,R(A)=R(A,b)=3,方程组有唯一解,由 [*] 得唯一解为x
1
=3,x
2
=1,x
3
=0。 当a=1且b= —1时,R(A)=R(A,b)=2<3,方程组有无穷多解。由 [*] 得同解方程组为 [*] 选x
3
为自由变量,对应的齐次线性方程组的基础解系为ξ=(—1,1,1)
T
,方程组的一个特解为η=(3,1,0)
T
,所以方程组的通解为x=η+kξ,其中k为任意常数。
解析
本题主要考查的是非齐次线性方程组解的判定。对于方程中含有参数的非齐次线性方程组解的判定问题,可以用系数矩阵的行列式或增广矩阵的秩来判定,而本题中系数矩阵无法求行列式,所以应该用增广矩阵的秩进行判定。若求通解只需求出一个基础解系及特解。
转载请注明原文地址:https://kaotiyun.com/show/EXV4777K
0
考研数学二
相关试题推荐
设(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
A=,r(A)=2,则()是A*X=0的基础解系.
已知a,b,c不全为零,证明方程组只有零解.
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
求曲线y=+ln(1+ex)的渐近线方程.
随机试题
具有四级结构的蛋白质特征是
血浆中起关键作用的缓冲对是
疾病监测采用的方法属于
关于一般抹灰施工及基层处理的说法,错误的是()。
我国雨凇最多的地方是()。
材料:刘某是一名初中二年级的学生,他特别喜欢罗纳尔多,于是把头发剃成足球式的形状。第二天来学校上课,刚走进教室,被老师看见,老师便对他说:“你的发式太怪了,把头发再剪剪,恢复正常了再来上课,顺便让你爸爸妈妈来学校一趟。”刘某回家后,将这件事告知家人,第二
一个人应该活得是自己并且干净顾城人的生命里有一种能量,它使你不安宁。说它是欲望也行,幻想也行,妄想也行,总之它不可能停下来,它需要一
A、 B、 C、 D、 A图形中的外层四边形顺时针旋转45。、中间四边形顺时针旋转90。、内部四边形逆时针旋转45。,得到后一个图形。由此应选择A。
根据下述材料。写一篇700字左右的论说文,题目自拟。中心是令人向往的地方,处于中心地带往往有诸多便利、机会和认同。当然也有人在中心地带迷失,最终边缘化。边缘是让人平静的地方,它的质朴和别样让生活其中的人受益良多,甚至还吸引中心的人们探寻它的魅力。
Weliveinatimewhen,morethaneverbeforeinhistory,peoplearemovingabout.
最新回复
(
0
)