首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
admin
2016-03-05
37
问题
已知n元齐次线性方程组A
1
x=0的解全是A
2
x=0的解,证明A
2
的行向量可以由A
1
的行向量线性表示.
选项
答案
因为A
1
x=0的解全是A
2
x=0的解,所以A
1
x=0与[*]同解.那么[*]所以A
2
的行向量可以由A
1
的行向量线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/EZ34777K
0
考研数学二
相关试题推荐
已知编号为1,2,3的3个袋中各有3个白球、2个黑球,从1,2号袋中各取一球放入3号袋中,则3号袋中自球数X的期望与方差分别为()
设,则()
设f(x)是周期为5的可导函数,又=1,则曲线y=f(x)在点(6,f(6))处的切线的方程为().
设函数f(x)在(0,+∞)内有二阶导数,且满足f(0)=0,f”(x)<0,0<a<b,则当a<x<b,恒有().
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=|xg(xt)dt,则当x→0时,F(x)是G(x)的().
若事件A1,A2,A3两两独立,则下列结论成立的是().
设求矩阵A可对角化的概率.
随机试题
依据分组标志反映的事物特征不同,统计分组可分为()
手术中输血发现手术野渗血不止和低血压,最可能的输血并发症为
血细胞分析时最常用的染色方法是
下列叙述错误的是()
妊娠时维持黄体功能的主要激素是()
女性,55岁。高血压20年,不规则服药。某日晨突发头痛,意识不清,30分钟后送到医院。体检:昏迷,血压210/110mmHg,双眼向右侧凝视,左足外旋位。最可能的病变部位是
简述原有的认知结构对迁移的作用。
节能减排是党中央、国务院做出的重大决定部署,是“十一五”时期的一项约束性指标,是一条不可逾越的红线。我们将进一步统一思想,认真贯彻落实党的十七大精神,牢固树立抓节能减排就是落实科学发展观、转变经济发展方式的理念,充分认识节能减排工作的长期性、艰苦性和复杂性
军事上的电子欺骗指的是利用电子设备对己方的相关信息进行伪装或者虚假模拟,欺骗敌方的电子侦察,使敌方对己方部署、作战能力和作战企图等产生错误判断。从而达到迷惑和扰乱敌方的目的。根据上述定义,下列涉及电子欺骗的是()。
Britishpeopledon’tdrinkasmanyteaastheyusedto,butGreat【S1】______Britainstilltakesalmosttwenty-fivep
最新回复
(
0
)