设a1>0,an+1=(n=1,2,…),求

admin2019-06-28  19

问题 设a1>0,an+1=(n=1,2,…),求

选项

答案显然,0<an<3(n=2,3,…),于是{an}有界. 令f(x)=[*],则an+1=f(an),f’(x)=[*]>0 (x>0).于是f(x)在x>0单调上升,从而{an}是单调有界的,故极限[*]=A,对递归方程取极限得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/EZV4777K
0

最新回复(0)