首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
admin
2018-02-07
76
问题
设矩阵A=
有一个特征值是3,求y,并求可逆矩阵P,使(AP)
T
(AP)为对角矩阵。
选项
答案
因为3是A的特征值,故|3E—A|=8(3一y—1)=0,解得y=2。于是 A=[*]。 由于A
T
=A,要(AP)
T
(AP)=P
T
A
2
P=[*],故可构造二次型x
T
A
2
x,再化其为标准形。由配方法,有 x
T
A
2
x=x
1
2
+x
2
2
+5x
3
2
+5x
4
2
+8x
3
x
4
=y
1
2
+y
2
2
+5y
3
2
+[*]y
4
2
, 其中y
1
=x
1
,y
2
=x
2
,y
3
=x
3
+[*]x
4
,y
4
=x
4
,即 [*] 于是 (AP)
T
(AP)=P
T
A
2
P=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/5Tk4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
_______是沿一条路径可变地扫掠一主截面建立的实体或片体。
设f(x)=(x≠0)在x=0处连续,且f(0)=,则a=【】
日常健康行为和避免有害健康行为属于
日龄6天,起病2日,不吃奶,精神弱,面色差,体温37摄氏度,呼吸急促,皮肤黄染,心肺正常,脐带未脱落,脐根部有少量稀薄分泌物,肝肋下3cm,脾肋下1cm,血清胆红素14mg/dl(23.4μmol/L),间接胆红素为主,诊断最大可能是
李先生自感全身不适前来就诊。门诊护士巡视时发现他面色苍白,出冷汗,呼吸急促,主诉腹痛剧烈。急诊医生处理后,李先生留住急诊观察室。在评估患者时,下述哪项是客观资料
生产硅酸盐水泥材料的天然岩石原料主要是下列哪一种?[2001年第031题][2007年第018题]
某天16:10,某厂维修班开始检修连接污油池的输油管线,16:20钳工甲将带有底阀的输油管线放入污油池内,当时污油池内油的液面高度为50cm,上面浮有30cm厚的污油,在连接100cm高的法兰时,由于法兰无法对正而连接不上,班长乙去车间喊电焊工丙,17:1
①因此把才学比作剑,当使用的时候就拿出来,而不用的时候就藏入鞘中,不将其把玩炫耀,否则,很少有不因此而得祸的②自古以来,才学外露的都遭到灾祸,没有一个幸免,怎么不令人为此忧心忡忡呢③才学是君子用来进行身心的修养,而并非用来自负骄矜的工具
只有通过身份认证的人才允许上公司内网,如果没有良好的业绩就不可能通过身份认证,张辉有良好的业绩而王维没有良好的业绩。如果上述断定为真,则以下哪项一定为真?
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
最新回复
(
0
)