首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+1/x2-18/25,则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由.
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+1/x2-18/25,则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由.
admin
2021-04-07
39
问题
设函数f(x)在区间I上有定义,若实数x
0
∈I,且满足f(x
0
)=x
0
,则称x
0
为f(x)在区间I上的一个不动点,设函数f(x)=3x
2
+1/x
2
-18/25,则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由.
选项
答案
显然f(x)=3x
2
+x
-2
-18/25在(0,+∞)上的不动点,即g(x)=3x
2
+x
-2
-x-18/25在(0,+∞)上的零点。 因为g’(x)=6x-2/x
3
-1,g’(1/2)=-14<0,g’(1)=3>0,且[*]>0, 所以g’(x)在(0,+∞)上有唯一零点x
0
∈(1/2,1)且为g(x)的极小值点。 于是g(x)在区间(0,+∞)上的最小值为[*], 这表明g(x)在区间(0,+∞)上没有零点,因此,f(x)在(0,+∞)上不存在不动点。
解析
转载请注明原文地址:https://kaotiyun.com/show/Eby4777K
0
考研数学二
相关试题推荐
微分方程xy’+y=0满足初始条件y(1)=2的特解为_________。
设矩阵A=,则A3的秩为_______。
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换化成了标准形f=y12+2y22,其中P为正交矩阵,则α=_____,β=________.
极限=_______.
证明不等式。
设f(x)在区间[a,﹢∞)上存在二阶导数,且,其中a,b均为常数,则=_______.
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=满足=0,若f(1)=0,f′(1)=1,求f(χ).
设a,b,n都是常数,.已知存在,但不为零,求n的最大值及相应的a,b的值.[img][/img]
设f(u)二阶连续可导,z=f(eχsiny),且=e2χz+e3χsiny,求f(χ).
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
随机试题
“气凝胶”是一个不断发展的概念,早期提及气凝胶,更多强调它是一种由湿凝胶去除溶剂之后得到具有纳米孔的多孔材料。但是后来出现的新型气凝胶,有一部分并不满足纳米孔的特点,甚至还有的气凝胶是由气相法制备的。气凝胶最传统的制备方法是利用有机醇盐等前驱体的水解聚合反
柱形锪钻外圆上的切削刃为主切削刃,起主要切削作用。( )
不影响肺弥散量的因素是
类风湿关节炎除关节受损外还有关节外病变,主要是
患者,男,34岁,症见身热夜甚,心烦谵语,斑疹隐隐,口渴,舌绛少苔,脉细数者。治宜选用
甲为年满22周岁的青年工人,乙为年满15周岁的精神病人(限制行为能力人)。一日乙之父正与甲聊天,甲问乙是否敢拿一块石头砸丙,乙便捡起一块石头向丙扔去,将丙砸伤,对此乙之父未予阻止,花去医药费2000元。对此损失,应由:()
国家助学贷款首次还款日应不迟于毕业后()年。
下列关于政策性银行的说法错误的是()。
美国各门课程中多样化的实践活动,日本的综合活动时间反映出对_____在课程中地位的重视。【】
[*]
最新回复
(
0
)