首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
admin
2019-03-08
74
问题
(2008年试题,23)设A为三阶矩阵α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
,(I)证明α
1
,α
2
,α
3
线性无关;(Ⅱ)令P=(α
1
,α
2
,α
3
),求
-1
PAP.
选项
答案
(I)假α
1
,α
2
,α
3
线性相关,则α
3
可由α
1
,α
2
线性表出,可设α
3
=k
3
α
1
+k
2
α
2
其中后k
1
,k
2
不全为0,否则由等式Aα
3
=α
2
+α
3
得到α
2
=0,不符合题设.因为α
1
,α
2
为矩阵A的分别属于特征值一1,1的特征向量,所以α
1
,α
2
相互独立,且有Aα
1
=一α
1
,Aα
2
=α
2
,则A%=A(k
1
α
1
+k
2
α
2
)=一k
1
α
1
+k
2
α
2
=α
2
+k
1
α
1
+k
2
α
2
.又α
1
,α
2
相互独立,等式中α
1
,α
2
的对应系数相等,即[*]显然此方程组无解.故假设不成立,从而可知α
1
,α
2
,α
3
线性无关.(Ⅱ)因为α
1
,α
2
,α
3
线性无关,所以矩阵P=(α
1
,α
2
,α
3
)可逆.由于AP=A(α
1
,α
2
,α
3
)=(一α
1
,α
2
,α
2
+α
3
)=(α
1
,α
2
,α
3
)[*]等式两边同时左乘矩阵P的逆矩阵P
-1
,可得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Edj4777K
0
考研数学二
相关试题推荐
设0<χ0<1,χn+1=χn(2-χn),求证:{χn}收敛并求χn.
设D:0≤χ≤1,0≤y≤1,则I==_______.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
设A1,A2,…,AN都是n阶非零矩阵,满足AiAj=证明每个Ai都相似于对角矩阵
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annkf(A)的对角线元素
求极限
y=2x的麦克劳林公式中xn项的系数是________.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设当χ>0时,f(χ)满足∫1χf(t)dt-f(χ)=χ,求f(χ).
随机试题
简述变动成本法与完全成本法在产品成本组成上的根本区别,并说明其理论依据。
下列哪项不是急性弥漫性腹膜炎的病理生理特点
室性心动过速,以下各项错误的是
对病人进行心理社会评估采用的最主要方法是
小贝购得一只世界杯指定用球后兴奋不已,一脚踢出,恰好落入邻居老马家门前的水井中,正在井边清洗花瓶的老马受到惊吓,手中花瓶落地摔碎,老马从井中捞出足球后,小贝央求老马归还,老马则要求小贝赔偿花瓶损失。对此,下列哪些选项是正确的?(2010年卷三第54题)
监理工程师一般对()方面的工程进行计量。
有条件的接受
下列合同中属于可撤销合同的是()
Onthesurface,Marsisthepictureofdesolation.Abarrenlandremains【C1】______forhundredsofmillionsofyears,motionless【
BilingualeducationiscontroversialintheUnitedStates.【C1】______,agrowingbodyofresearchshowsthat【C2】______speakingt
最新回复
(
0
)