首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
admin
2019-03-08
94
问题
(2008年试题,23)设A为三阶矩阵α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
,(I)证明α
1
,α
2
,α
3
线性无关;(Ⅱ)令P=(α
1
,α
2
,α
3
),求
-1
PAP.
选项
答案
(I)假α
1
,α
2
,α
3
线性相关,则α
3
可由α
1
,α
2
线性表出,可设α
3
=k
3
α
1
+k
2
α
2
其中后k
1
,k
2
不全为0,否则由等式Aα
3
=α
2
+α
3
得到α
2
=0,不符合题设.因为α
1
,α
2
为矩阵A的分别属于特征值一1,1的特征向量,所以α
1
,α
2
相互独立,且有Aα
1
=一α
1
,Aα
2
=α
2
,则A%=A(k
1
α
1
+k
2
α
2
)=一k
1
α
1
+k
2
α
2
=α
2
+k
1
α
1
+k
2
α
2
.又α
1
,α
2
相互独立,等式中α
1
,α
2
的对应系数相等,即[*]显然此方程组无解.故假设不成立,从而可知α
1
,α
2
,α
3
线性无关.(Ⅱ)因为α
1
,α
2
,α
3
线性无关,所以矩阵P=(α
1
,α
2
,α
3
)可逆.由于AP=A(α
1
,α
2
,α
3
)=(一α
1
,α
2
,α
2
+α
3
)=(α
1
,α
2
,α
3
)[*]等式两边同时左乘矩阵P的逆矩阵P
-1
,可得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Edj4777K
0
考研数学二
相关试题推荐
a为什么数时二次型χ12+3χ22+2χ32+2aχ2χ3可用可逆线性变量替换化为2y12-3y22+5y32?
求ω=
设3阶实对称矩阵A的秩为2,又6是它的二重特征值,向量α1=(1,1,0)T和α2=(2.1,1)T和α3=(-1,2,-3)T都是属于6的特征向量.(1)求A的另一个特征值与相应的特征向量.(2)求A.
已知(1)求χ,y.(2)求作可逆矩阵U,使得U-1AU=B.
求下列定积分:
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
计算积分
已知三阶方阵A的行列式|A|=2,矩阵B=,其中Aij为A的(i,j)元素的代数余子式(i、j=1,2,3),求AB.
随机试题
加碱化剂的目的是消除氢离子的干扰。
未经有关部门批准,医师擅自开办诊所,卫生行政部门可采取的措施不包括
A.AAI起搏器B.VVI起搏器C.VAT起搏器D.DDD起搏器E.VOO起搏器测得窦房结恢复时间为2400ms,房室结文氏点为160次/分,可选用
A.当量剂量B.有效剂量C.比释动能D.吸收剂量E.吸收剂量率当身体各部分受到不同程度照射时,对人体造成的总的随机性辐射损伤是
关于总会计师,下列说法正确的有()。
按照(),金融机构可分为金融调控机构和金融运行机构。
外国旅游者在来华途中行李确系丢失,应由()向有关航空公司索赔。
从警察起源上看,()。
下列语句中,正确的是()。
Careforchildrenandolderpeoplehasrecentlyhittheheadlines.Governmentannouncementsonfundingreformshaveputcarefir
最新回复
(
0
)