设函数f(x)在(0,+∞)内连续,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1x f(u)du +x∫1t f(u)du.求函数f(x)的表达式.

admin2017-05-31  57

问题 设函数f(x)在(0,+∞)内连续,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1x f(u)du +x∫1t f(u)du.求函数f(x)的表达式.

选项

答案由已知条件可知,等式两边关于变量t是可导的.于是,对等式两边关于t求导,得xf(xt)= ∫1xf(u)du+xf(t) .在上式中,若t=1,得xf(x)= ∫1xf(u)du+xf(t)= ∫1xf(u)du+[*]显然,上式两边关于变量x也是可导的.于是,对等式两边关于x求导,得f(x)+ xf ’ (x)=[*]这是一个变量可分离的微分方程.两边同时对变量x积分,有[*]其中c为任意常数. [*]

解析 本题主要考查如何将一个积分方程化为一个微分方程,并用相应的方法求解微分方程的特解.
由于所给积分方程中,变量x、t不仅是任意的,而且是对称的,则先固定一个变量,对另一个变量求导,就可得到相应的微分方程.
转载请注明原文地址:https://kaotiyun.com/show/Eiu4777K
0

最新回复(0)