首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img] 方程组有非零解,在有非零解时,求此方程组的一个基础解系。
已知齐次线性方程组 其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img] 方程组有非零解,在有非零解时,求此方程组的一个基础解系。
admin
2019-04-22
77
问题
已知齐次线性方程组
其中
。试讨论a
1
,a
2
,…,a
n
和b满足何种关系时:[img][/img]
方程组有非零解,在有非零解时,求此方程组的一个基础解系。
选项
答案
当b=0时,原方程组的同解方程组为a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0。 由[*]a
i
≠0可知,a
i
(i=1,2,…,n)不全为零。不妨设a
1
≠0,得原方程组的一个基础解系为 α
1
=(一a
2
,a
1
,1,0,…,0)
T
,α
2
=(一a
3
,0,a
1
,…,0)
T
,…,α
n—1
=(一a
n
,0,0,…,a
1
)
T
。 当b=[*]a
i
时,有b≠0,原方程组的系数矩阵可化为 [*] (将第一行的一1倍加到其余各行,再从第二行到第n行同乘以[*]倍) [*] (将第i行的一a
i
(i=2,3,…,n)倍加到第一行,再将第一行移到最后一行) [*] 由此得原方程组的同解方程组为 x
2
=x
1
,x
3
=x
1
,…,x
n
=x
1
。 原方程组的一个基础解系为α=(1,1,…,1)
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/EkV4777K
0
考研数学二
相关试题推荐
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为().
A、等价无穷小量B、同阶但非等价无穷小量C、高阶无穷小量D、低阶无穷小量B
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是()
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
设曲线y=,过原点作切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
曲线y=(χ-1)(χ-2)和χ轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
(1)设=8,则a=_______.(2)设χ-(a+bcosχ)sinχ为χ的5阶无穷小,则a_______,b_______.(3)设当χ→0时,f(χ)=ln(1+t)dt~g(χ)=χa(ebχ-1),则a=_______,b=
随机试题
关格之脾肾阳虚,湿浊内蕴证的治法为
主动脉血流能在心动周期中保持相对稳定,其主要原因是主动脉的
甲非法种植罂粟400株经公安机关行政处罚并强制铲除后,又私自到深山中种植罂粟300株,收获后制成鸦片出售一部分,自己留有250克供吸食之用,甲的行为构成________。
甲公司是一家建设投资公司,业务涵盖市政工程绿化、旅游景点开发等领域。近年来,夏日纳凉休闲项目受到青睐,甲公司计划在位于市郊的A公园开发W峡谷漂流项目(简称“W项目”),目前正在进行项目评价,有关资料如下:(1)甲公司与A公园进行洽谈并初步约定,甲公司一次
《中共中央国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》强调,要鼓励各类企业通过股权、期权、分红等激励方式,调动科研人员的创新积极性。实施股权激励方式()。
目前世界上最大型、种类最丰富的一部巨著是:
将【E:\Tools】文件夹设置为共享文件,且允许网络用户更改文件。
有如下程序:#include#includeusingnamespacestd;classMyBag{public:MyBag(stringb
RockmusicwasA(original)B(amixture)ofcountrymusicandC(rhythm)D(and)blues.
Topuniversitieshavebeencalledontopublishlistsof"banned"A-levelsubjectsthatmayhavepreventedthousandsofstatesc
最新回复
(
0
)