首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img] 方程组有非零解,在有非零解时,求此方程组的一个基础解系。
已知齐次线性方程组 其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img] 方程组有非零解,在有非零解时,求此方程组的一个基础解系。
admin
2019-04-22
53
问题
已知齐次线性方程组
其中
。试讨论a
1
,a
2
,…,a
n
和b满足何种关系时:[img][/img]
方程组有非零解,在有非零解时,求此方程组的一个基础解系。
选项
答案
当b=0时,原方程组的同解方程组为a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0。 由[*]a
i
≠0可知,a
i
(i=1,2,…,n)不全为零。不妨设a
1
≠0,得原方程组的一个基础解系为 α
1
=(一a
2
,a
1
,1,0,…,0)
T
,α
2
=(一a
3
,0,a
1
,…,0)
T
,…,α
n—1
=(一a
n
,0,0,…,a
1
)
T
。 当b=[*]a
i
时,有b≠0,原方程组的系数矩阵可化为 [*] (将第一行的一1倍加到其余各行,再从第二行到第n行同乘以[*]倍) [*] (将第i行的一a
i
(i=2,3,…,n)倍加到第一行,再将第一行移到最后一行) [*] 由此得原方程组的同解方程组为 x
2
=x
1
,x
3
=x
1
,…,x
n
=x
1
。 原方程组的一个基础解系为α=(1,1,…,1)
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/EkV4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
计算二重积分(χ2+4χ+y2)dχdy,其中D是曲线(χ2+y2)2=a2(χ2-y2)围成的区域.
求极限
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设β=,求Aβ.
求极限:
已知A为三阶方阵,A2一A一2E=O,且0<|A|<5,则|A+2E|=_________。
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
设f(x)在(-∞,+∞)连续,在点x=0处可导,且f(0)=0,令(Ⅰ)试求A的值,使F(x)在(-∞,+∞)上连续;(Ⅱ)求F’(x)并讨论其连续性.
随机试题
痛欲复裂,半步而踣踣:
现代社会发展的必然要求是_______。
A.10~12gB.18~25gC.70~90gD.180~240gE.200~250g急性毒性试验选择小鼠体重为
A.精神分裂症B.器质性精神障碍C.应激所致精神障碍D.精神病性抑郁E.急性妄想发作持续短暂,突然产生,突然消失的一个或多个妄想,且间歇期正常
下列化合物属于黄酮醇的是
对二级负荷供电电源的要求是()。
依据教学目标制定的依据,下列不属于目标的三大特征的是()。
最早的漆器出现在()。
ChooseTWOlettersA-E.WhichTWOchangestotheorganisationofthisyear’sfestivalarementioned?AFreeparking.BFreerefr
A、Astoryinprose.B、Apoemthatrhymes.C、AtranslationofashortliteraryworkD、Ajournalabouttheprocessofwriting.A男士
最新回复
(
0
)