首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
admin
2020-03-10
44
问题
设矩阵A=
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
选项
答案
矩阵A的特征多项式为 |λE-A|=[*]=(λ-2)(λ
2
-8λ+18+3a), (Ⅰ)如果λ=2是单根,则λ
2
-8λ+18+3a是完全平方,那么有18+3a=16,即a=[*] 由于矩阵A的特征值是2,4,4,而秩r(4E-A)=[*]=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化. (Ⅱ)如果λ=2是二重特征值,则λ
2
-8λ+18+3a=(λ-2)(λ-6),那么有18+3a=12,即a=-2. 由于矩阵A的特征值是2,2,6,而秩r(2E-A)=[*]=1,故A=2有2个线性无关的特征向量.从而A可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/EwD4777K
0
考研数学三
相关试题推荐
设f(x)连续可导,导数不为0,且f(x)存在反函数f-1(x),又F(x)是f(x)的一个原函数,则不定积分=_____________________。
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,。证明
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则()
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设二元函数f(x,y)=计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
随机试题
()是国家生存与发展的安全保障。
下列不属于领导权力主要表现的是
有关损伤的急救和转运,下列哪几项是正确的
斑蝥的气味是
下列施工成本管理的措施中,属于组织措施的是()。
下列有关控制测试性质的说法中,错误的是()。
在一根很长的弦线上形成的驻波是()。
两个不等的实数a与b,均满足方程x2-3x=1,则=().
交通信号能同时被多人接收,说明信息具有(23)。
A、Themancannotmoveoutfromtheapartment.B、Themanshouldrenttheapartmentfor6months.C、Themanonlygets$500backif
最新回复
(
0
)