首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-01-19
64
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即γ
1
=(1,2,一l,0)
T
是Ax=β的解。同理γ
2
=(1,l,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,
η
2
=γ
3
一γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,故选B。
转载请注明原文地址:https://kaotiyun.com/show/TmP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
设线性方程组A3×4X=b有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是().
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
患者,女,35岁。病人每于经间期出血,出血量多,色红质黏,无血块,神疲乏力,骨节酸楚,胸闷烦躁,纳食减少,小便短少,夜寐不熟,便干尿黄,舌红苔黄腻,脉细弦。治疗应首选( )。
甲乙两公司在交易过程中,乙公司向甲公司签发了票面金额为50万元的汇票一张,付款人为丙银行。后乙公司因经营不善,被法院宣告破产。随后甲公司向丙银行申请付款,则下列做法正确的是()。
2018年年初某企业拥有房产的原值共计3000万元,其中厂房原值共计2600万元,厂办幼儿园房产原值300万元,独立的地下工业用仓库原价100万元。该企业2018年发生如下业务:6月30日将原值为300万元的厂房出租,合同载明年租金24万元,每年年末取得
简述福勒等人提出的教师成长的三个阶段。
学生作为学习的主体因素,会从两个方面影响学与教的过程,一方面是群体差异,一方面是个体差异。下列因素中,属于个体差异因素的是()。
设当x→0时,(x-sinx)ln(1+x)是比高阶的无穷小,而是比高阶的无穷小,则n为().
打开指定文件夹下的演示文稿yswg01(如图),按下列要求完成对此文稿的修饰并保存。(1)在演示文稿开始处插入一张“标题幻灯片”,作为演示文稿的第一张幻灯片,输入主标题为“健康伴你一生”;第二张幻灯片版面设置改变为“垂直排列标题与文本”,并
母に________、ほんとうに悲しかった。
TheLondonUndergroundMapTheLondonUndergroundmapisextremelywelldesigned.Simple,easytounderstandand【76】(ATTRACT
Thenation’smurderratedeclinedlastyearforthefirsttimeinfouryears,droppingtothelowestlevelin40years.Experts
最新回复
(
0
)