首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-01-19
49
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即γ
1
=(1,2,一l,0)
T
是Ax=β的解。同理γ
2
=(1,l,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,
η
2
=γ
3
一γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,故选B。
转载请注明原文地址:https://kaotiyun.com/show/TmP4777K
0
考研数学三
相关试题推荐
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则().
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
背景资料:宏达公司新员工培训宏达公司是一家省级科技开发公司,公司效益一直比较好,成立多年来一直非常重视新员工的引进与培训工作,随着公司业务的逐步拓展,为了适应企业需要,今年准备从高校应届毕业生中招聘一批新的员工。为使新进入人员尽快地了解公司、认
对胸骨的不正确的描述是
27岁,孕1产0,孕36周,自孕34周起有乏力、食欲减退,恶心呕吐,近1周来下肢出现浮肿,测血压140/100mmHg,尿蛋白(+),近3天巩膜黄染,上腹部胀满,头痛。血检谷丙转氨酶300U,胆红素8mg%。
哮喘缓解期,肺气虚弱的治法是
在经济分析中,可以将建设项目对区域的影响效果进行()分析,指出项目的各种经济影响后果。
某县城一大型机械制造企业2017年自行核算的销售(营业)收入8000万元,销售(营业)成本5000万元,税金及附加500万元,期间费用2300万元,其他支出合计200万元,应纳税所得额为0。某会计师事务所对其进行年终审计时发现如下情况:(1)2017年
()是我国第一任公安部部长。
一个四位数“口口口口”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数“口口口口”中四个数字的和是多少?()
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确。内容充实,论述深刻,有说服力。
A、Theywerejustasbusyaspeopleoftoday.B、Theysawtheimportanceofcollectiveefforts.C、Theydidn’tcomplainasmuchas
最新回复
(
0
)