首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A)=秩
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A)=秩
admin
2019-04-08
65
问题
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
仅B入选.命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n一秩(A)≤n一秩(B),秩(A)≥秩(B).
转载请注明原文地址:https://kaotiyun.com/show/Ex04777K
0
考研数学一
相关试题推荐
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计。
如图1.3-1所示,设曲线方程为,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(Ⅰ)U=XY的概率密度fU(υ);(Ⅱ)V=|X—Y|的概率密度fV(υ).
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=所截而成,计算|(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,6)>0时,b=φ(a)是极大值;当r(a,b)<
求曲面积分I=(x+cosy)dydz+(y+cosz)dzdx+(z+cosx)dxdy,其中S为x+y+z=π在第一卦限部分,取上侧.
设事件A,B独立.证明:事件A,都是独立的事件组.
设函数f(x)=ln(2+t)dt,则f’(x)的零点个数()
设随机事件A,B及A∪B的概率分别为0.4,0.3和0.6,则P(A)=_______.
[2015年]设是二阶常系数非齐次线性微分方程y’’+ay’+by=cex的一个特解,则().
随机试题
下图为北半球近地面某气压场中大气受力作用与风向示意图。读图完成下列问题。形成图中近地面风的直接原因是()。
A.综合计划B.长期计划C.短期计划D.专项计划E.战略性计划组织或系统对活动所做出的整体安排是
根据《水工建筑物抗冲磨防空蚀混凝土技术规范》DL/T5207—2005,泄水建筑物中水流空化数σ小于()的部位应采取防空蚀措施。
职业道德的特征包括()。
根据以下资料回答下列题。2010年1—3月,法国货物贸易进出口总额为2734.4亿美元,同比增长13.4%。其中,出口1264.7亿美元,同比增长14.5%;进口1469.7亿美元,同比增长12.4%;逆差205.0亿美元,同比增长1.0%。1~3月,中
教师由“教书匠”转变为“教育家”的主要条件是()。
以下哪项最为恰当地概括了陈先生和贾女士所争论的问题?()在贾女士的应对中,提到有些蜂类辨别方位的方式。以下哪项最为恰当地概括了这一议论在贾女士应对中所起的作用?()
Todefinesciencewemaysimplycallit______.Thebesttitleforthepassagewouldbe______.
Thepassageismainlyabout______.AcoastguarddoesNOTrequirethelifepreservertobemade______.
HavingKidsMakesYouHappy?[A]WhenIwasgrowingup,ourformerneighbors,whomwe’llcalltheSloans,weretheonlycoupleon
最新回复
(
0
)