首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A)=秩
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A)=秩
admin
2019-04-08
45
问题
[2003年] 设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
仅B入选.命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n一秩(A)≤n一秩(B),秩(A)≥秩(B).
转载请注明原文地址:https://kaotiyun.com/show/Ex04777K
0
考研数学一
相关试题推荐
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分2xydx+Q(x,y)dy与路径无关,并且对任意t恒有,求Q(x,y)。
设随机变量U服从二项分布,随机变量求随机变量X-Y与X+Y的方差和X与Y的协方差。
设二次型f(x1,x2,x3)=ax12+ax22+ax32+2x1x2正定,求a的取值范围。
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
将函数展开成x的幂级数,并指出其收敛区间.
为清除井底污泥,用缆绳将抓斗放入井底,抓起污泥提出井口.设井深30m,抓斗自重400N,缆绳每米重50N,抓斗盛污泥2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速度从抓斗中漏掉.现将抓斗从井底提升到井口,问克服重力做功多少?
设函数f(x)=ln(2+t)dt,则f’(x)的零点个数()
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
设A、B是两个随机事件,P(A)=0.4,P(B|A)+P()=1,P(A∪B)=0.7,求P().
随机试题
根据公路工程陆上作业安全技术要求,对机械车辆在危险地段作业时的要求错误的是()。
现代意义上的政党最早出现于()
操吴戈兮被犀甲。被:
项目经理部应在确定施工方案的初期就要确定需要分包的工程范围,决定分包范围的因素主要有()。
古代诗词复习课上,教师引导学生总结诗词的修辞手法。下列与“无边落木萧萧下,不尽长江滚滚来”所用修辞手法相同的是()。
读图(地球公转示意图),回答下列各题。地球运行到A点时,正值“二分二至”中的___________日,日期在___________月___________日前后。
根据以下资料,回答111-115题2007年1-6月,农村居民8类消费性支出中,第三高的是:
欧洲主权债务危机爆发之后,由于欧洲债务问题不断蔓延,而且变成了一个长期的问题,欧洲联合中存在的统一货币政策与分散财政政策的内在矛盾也难以在短期内解决,市场上出现了看空欧元的情绪,有人甚至认为欧元将在未来不长时间内发生分裂和崩溃。然而我们应当看到,联合已经成
设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是().
Tasteissuchasubjectivematterthatwedon’tusuallyconductpreferencetestsforfood.Themostyoucansayaboutanyone’sp
最新回复
(
0
)