首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥|f(x)|。
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥|f(x)|。
admin
2019-01-19
90
问题
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥
|f(x)|。
选项
答案
(1)若f(x)≡0,则结论显然成立; (2)设|f(x
0
)|=[*]|f(x)|,x
0
∈(a,b),即函数f(x)在x=x
0
处取得最大值。又因为f(x)在[a,b]上二阶可导,则有f(x
0
)=0。将函数f(x)在x=x处展成带有拉格朗日型余项的二阶泰勒展开式,即 f(x)=f(x
0
)+f(x
0
)(x一x
0
)+[*](x一x
0
)
2
,η=x
0
+θ(x一x
0
),0<θ<1。 由于f(a)=0,故将x=a代入上式可得 0=f(a)=f(x
0
)+f'(x
0
)(a一x
0
)+[*](a一x
0
)
2
, 即 f|"(ξ
1
)|=[*],a<ξ
1
<x
0
。 同理,有0=f(b)=f(x
0
)+f(x)(b一x
0
)+[*](b一x
0
)
2
, 即 |f"(ξ
2
)|=[*],x
0
<ξ
2
<b
0
。 令|f"(ξ)|=[*]|f"(x)|,则 |f"(ξ)|=[*]=[|f"(ξ
1
)|+|f"(ξ
2
)|] =|f(x
0
)|[*] ≥|f(x
0
)|[*] 当且仅当x
0
=[*]时,不等式中的等号成立。 故存在ξ使得 |f"(ξ)|≥[*]|f(x
0
)|, 即 |f"(ξ)|≥[*]|f(x)|。
解析
转载请注明原文地址:https://kaotiyun.com/show/F1P4777K
0
考研数学三
相关试题推荐
设函数在x=1处连续,则a=__________.
设f(x)可导,证明:F(x)=f(x)[1+|ln(1+arctanx)||在x=0处可导的充分必要条件是f(0)=0.
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x—t)dt.求.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
已知A=[α1,α2,α3,α4],其中α1,α2,α3,α4为四维列向量,方程组Ax=0的通解为k(2,一1,2,5)T,则α4可由α1,α2,α3,表示为__________.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
假设D={(x,y)|0≤x≤2,0≤y≤1},随机变量X和Y的联合分布是区域D上的均匀分布.考虑随机变量(1)求X和Y的相关系数ρ;(2)求U和V的相关系数γ.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
随机试题
行政复议
在Excel2003中,当选择“工具”|“保护”|“保护工作表”命令后,则工作表中的所有______都处于保护状态,因此不能修改。
女患者,证见月经40~50日一行,量少,色淡红,无血块,头晕眼花,心悸少寐,面色苍白,舌淡红,脉细弱。应首选
李法官在审理一起二审民事案件中的哪一种做法违反了维护审判独立的原则?()
嘉业股份有限公司(简称嘉业股份)是一家在上海证券交易所上市的公司,股本总额为8亿元,最近一期期末经审计的净资产为6亿元。2014年3月5日,嘉业股份董事会对以下几种融资方案进行了讨论:(1)优先股发行方案。该方案主要内容为:公开发行优先股3亿股,
导致存货审计复杂的主要原因是()。
关于这张古代作战图,下列说法正确的是:
下列进程调度算法中,综合考虑进程等待时间和执行时间的是()。
Themulti-billion-dollarWesternpopmusicindustryisunderfire.ItisbeingblamedbytheUnitedNationsforthedramaticris
Manyprocesseswithinourbodiesaretimedtoacycleofabouttwenty-fourhours.Ifthebodytemperatureistakeneveryhouror
最新回复
(
0
)