首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥|f(x)|。
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥|f(x)|。
admin
2019-01-19
89
问题
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b)使|f”(ξ)|≥
|f(x)|。
选项
答案
(1)若f(x)≡0,则结论显然成立; (2)设|f(x
0
)|=[*]|f(x)|,x
0
∈(a,b),即函数f(x)在x=x
0
处取得最大值。又因为f(x)在[a,b]上二阶可导,则有f(x
0
)=0。将函数f(x)在x=x处展成带有拉格朗日型余项的二阶泰勒展开式,即 f(x)=f(x
0
)+f(x
0
)(x一x
0
)+[*](x一x
0
)
2
,η=x
0
+θ(x一x
0
),0<θ<1。 由于f(a)=0,故将x=a代入上式可得 0=f(a)=f(x
0
)+f'(x
0
)(a一x
0
)+[*](a一x
0
)
2
, 即 f|"(ξ
1
)|=[*],a<ξ
1
<x
0
。 同理,有0=f(b)=f(x
0
)+f(x)(b一x
0
)+[*](b一x
0
)
2
, 即 |f"(ξ
2
)|=[*],x
0
<ξ
2
<b
0
。 令|f"(ξ)|=[*]|f"(x)|,则 |f"(ξ)|=[*]=[|f"(ξ
1
)|+|f"(ξ
2
)|] =|f(x
0
)|[*] ≥|f(x
0
)|[*] 当且仅当x
0
=[*]时,不等式中的等号成立。 故存在ξ使得 |f"(ξ)|≥[*]|f(x
0
)|, 即 |f"(ξ)|≥[*]|f(x)|。
解析
转载请注明原文地址:https://kaotiyun.com/show/F1P4777K
0
考研数学三
相关试题推荐
已知f(x)的导函数的图形如下图所示,记I1=(1)=f(0),I2=F(2)一F(1),则必有
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
微分方程y’+ay=b(其中a,b均为常数)的通解是_________.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设总体X~N(μ,σ2),其中σ2已知,若已知样本容量和置信度1—α均不变,则对于不同的样本观测值,总体均值μ的置信区间的长度().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
________是原始审美发生中最重要的一种中介因素。
公文处理工作这一基本任务的主要内容包括()
SomestudentsattheOpenUniversityleftschool20yearsago.Othersare【C1】______butallmustbeatleast21yearsold.Thisi
下面哪项不是初级卫生保健服务
()是指民事法律关系的相对发生,即原有民事法律关系的主体的权利义务全部或部分转由新的主体享有和承担,形成新的民事法律关系。
在采用强制确定法选择价值工程对象时,当价值系数()时,不应选为价值工程研究对象。
在下列关于官渡之战的表述中,错误的是______。①发生在公元前200年②发生在三国时期③曹操以少胜多④袁军主力全部被消灭
莎士比亚是英国戏剧家,一生写了三十多个剧本,其中《哈姆莱特》《李尔王》《奥赛罗》《麦克白》为四大悲剧。(暨南大学2017)
A、Addtheborrowertoyourcreditcards.B、Dipintoyourownsavings.C、Workhardtoearnmoremoney.D、Politelyexplainthesit
Participantobservationalsoreflectsanthropology’sdualnatureasbothascientificandahumanisticdiscipline(科学).Through
最新回复
(
0
)