首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,…,αr线性无关( ).
α1,α2,…,αr线性无关( ).
admin
2018-11-23
20
问题
α
1
,α
2
,…,α
r
线性无关
( ).
选项
A、存在全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0.
B、存在不全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
2
+…+k
r
α
r
≠0.
C、每个α
i
都不能用其他向量线性表示.
D、有线性无关的部分组.
答案
C
解析
选项A不对,当k
1
=k
2
=…=k
r
=0时,对任何向量组α
1
,α
2
,…,α
r
,k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0都成立.
选项B不对,α
1
,α
2
,…,α
r
线性相关时,也存在不全为零的实数k
1
,k
2
,…,k
r
,使得k
1
α
1
+k
2
α
2
+…+k
r
α
r
≠0;
选项C就是线性无关的意义.
选项D不对,线性相关的向量组也可能有线性无关的部分组.
转载请注明原文地址:https://kaotiyun.com/show/F2M4777K
0
考研数学一
相关试题推荐
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
设F(x)是f(x)的原函数,F(1)=若当x>0时,有f(x)F(x)=,试求f(x).
设函数f(x)=在(一∞,+∞)内连续,且,则常数a,b满足
设向量组(I):α1,α2,…,αr线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
已知随机变量X与Y独立,且X服从[2,4]上的均匀分布,Y~N(2,16).求cov(2X+XY,(Y-1)2).
一批矿砂的4个样品中镍含量测定为(%):3.25,3.26,3.24,3.25.设测定值总体服从正态分布,问在α=0.01下能否接受假设:这批矿砂镍含量的均值为3.26.(t0.99(3)=5.8409,下侧分位数).
(06年)设总体X的概率密度为其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数.求θ的最大似然估计.
(01年)设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机变
随机试题
根据《企业所得税法》的规定,可以得到降低税率的照顾的企业有()
A.萘普生B.阿司匹林C.青霉胺D.丙种球蛋白E.肾上腺皮质激素
A.15°B.60°C.70°D.80°E.140°
中医理论中的病因不包括
在施工进度网络计划中关键线路()。
在施工合同履行中,发包人按合同约定购买了玻璃,现场交货前未通知承包人派代表共同进行现场交货清点,单方检验接收后直接交承包人的仓库保管员保管,施工使用时发现部分玻璃损坏,则应由( )。
培养学生的爱好和(),是促进个性发展的重要方面,而不是个性发展的全部内容。
下列各项中,影响企业所有者权益的有()。
目前微型计算机中采用的逻辑元件是(2)。
A、Businessassociates.B、Bossandsecretary.C、Teacherandstudent.D、Goodfriends.A综合推断题。男士说很高兴在一起工作,希望能再次合作,女士对此表示赞同,由此推断,两人是
最新回复
(
0
)