首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
admin
2017-05-26
33
问题
(10年)设A=
,正交矩阵Q使得Q
T
AQ为对角矩阵.若Q的第1列为
(1,2,1)
T
,求a,Q.
选项
答案
由题设,ξ=(1,2,1)
T
为A的一个特征向量,于是有Aξ=λ
1
ξ,即 [*] 解得λ
1
=2,a=-1.所以A=[*] 由A的特征方程 [*] 得A的特征值为2,5,-4. 对于特征值5,求齐次线性方程组(5I-A)χ=0的基础解系,由 [*] 得通解χ
1
=χ
3
,χ
2
=-χ
3
(χ
3
任意).令χ
3
=1,得基础解系为(1,-1,1)
T
,将其单位化,得属于特征值5的一个单位特征向量为[*](1,-1,1)
T
. 同理可求得属于特征值-4的一个单位特征向量为[*](-1,0,1)
T
. [*] 故Q为所求的正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/F3H4777K
0
考研数学三
相关试题推荐
四阶行列式D==_____.
设函数f(x)在点x=a处可导,则甬数|f(x)|在点x=a处不可导的充分条件是().
设总体X一N(μ,32),其中μ为未知参数,X1,X2,…,X16为来自总体X的样本,X为样本均值.如果对于检验Hoμ=μo,取拒绝域,在显著水平a=0.05下,k的值为_____.(附φ(1.65)=0.95,φ(1.96)=0.975)
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT,求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
假设曲线ι1=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
求二元函数F(x,y)=zye-(x2+y2)在区域D={(x,y)|x≥0,y≥0}上的最大值与最小值.
已知y1=xex+ex,y2=xex+e-x,y3=xex+e2x—e-x是某二阶线性非齐次微分方程的三个解,则此微分方程为___________.
设f(x)与x为等价无穷小,且f(x)≠x,则当x→0+时,[f(x)]x一xx是
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(I)的结果判断矩阵B~CTA-1C是否为正定矩阵,并证明你的结论.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
渗碳一般适用于45、40Cr等中碳钢或中碳合金钢。()
金樽清酒斗十千,玉盘珍羞直万钱。停杯投箸不能食,拔剑四顾心茫然。欲渡黄河冰塞川,将登太行雪满山。闲来垂钓碧溪上,忽复乘舟梦日边。行路难,行路难,多歧路,今安在?长风破浪会有时,直挂云帆济沧海。请解释这段文字中加点字的含义。羞:箸:
成年人股骨头血液供应中不包括下列哪条血管
同病异治的实质是
青年人咯血多见于
甲企业的某项固定资产原价为2000万元,采用年限平均法计提折旧,使用寿命为10年,预计净残值为0,在第5年年初企业对该项固定资产的某一主要部件进行更换,发生支出合计1000万元,并且符合固定资产的确认条件,被更换的部件的原价为800万元。则该项固定资产
根据所给材料,回答问题。历史向世界历史的转变,是人类历史发展进程中的重要转变。此前世界处于相对隔绝状态下的国家发展传统模式将被彻底打破,从此,任何国家和民族都必须在参加普遍交往和国际竞争中求得生存和发展。也就是说,愈来愈多的民族、国家和地区间的闭
绿色注重的是解决人与自然和谐问题。人类发展活动必须尊重自然、顺应自然、保护自然,否则就会遭到大自然的报复,这个规律谁也无法抗拒。绿色发展,就是要()
From:DorothyFieldsTo:JohnEricssonSubject:DueDateDate:February20DearDr.Ericsson,Onceagain,Iwouldliketocon
TheAmericanWay:FreedomTheheartoftheAmericancalendarisJuly4Americanshavecelebrat-ed-thisdateas"Independence
最新回复
(
0
)