首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线г位于曲面z=χ2+y2上,г在χy平面上投影的极坐标方程为r=e*θ. (Ⅰ)求г上柱坐标(r,θ,z)=(1,0,1)的点M0的切线L的直角坐标方程; (Ⅱ)求£在平面П:χ+y+z=1的投影L′的方程.
设曲线г位于曲面z=χ2+y2上,г在χy平面上投影的极坐标方程为r=e*θ. (Ⅰ)求г上柱坐标(r,θ,z)=(1,0,1)的点M0的切线L的直角坐标方程; (Ⅱ)求£在平面П:χ+y+z=1的投影L′的方程.
admin
2018-06-12
19
问题
设曲线г位于曲面z=χ
2
+y
2
上,г在χy平面上投影的极坐标方程为r=e
*θ
.
(Ⅰ)求г上柱坐标(r,θ,z)=(1,0,1)的点M
0
的切线L的直角坐标方程;
(Ⅱ)求£在平面П:χ+y+z=1的投影L′的方程.
选项
答案
(Ⅰ)M
0
的直角坐标为 (rcosθ,rsinθ,z)|
(r,θ,z)=(1,0,1)
=(1,0,1). 关键是求г的参数方程 χ=r(θ)cosθ=e
θ
cosθ,y=r(θ)sinθ=e
θ
sinθ,z=χ
2
+y
2
=e
2θ
. г在点M
0
的切向量 τ=(χ′(0),y′(0),z′(0))=(e
θ
(cosθ-sinθ),e
θ
(sinθ+cosθ),2e
2θ
)|
θ=
=(1,1,2), г在M
0
处的切线方程是[*] (Ⅱ)过L与平面П垂直的平面П
1
,即过L上的点(1,0,1)且与L的方向向量l(1,1,2)及П的法向量n=(1,1,1)平行的平面,于是П
1
的方程为 [*] 即χ-y-1=0. 因此L在平面П的投影L′的方程是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FFg4777K
0
考研数学一
相关试题推荐
设(X,Y)为二维连续型随机变量,则下列公式各项都有意义的条件下①f(x,y)=fX(x)fY(y);②fX(x)=∫-∞+∞fY(y)fX|Y(x|y)dx;④P{X<Y)=∫-∞+∞FX(y)fY(y)dy,其中FX(y)=∫-∞yfX(x)d
设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
下列条件不能保证n阶实对称阵A为正定的是()
设A=(1)计算行列式|A|(2)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
曲线y=的拐点的个数为
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(-∞,+∞)内的连续性.
设两曲线y=f(x)与在点(0,0)处有相同的切线,则=________
随机试题
试述商品储存的必要性和重要性。
IcannotaffordthecolorTVset.Tome,fourhundreddollars______alotofmoney.
培养基的pH过低可扩大下列哪种药物的抑菌圈A.米诺环素B.庆大霉素C.红霉素D.诺氟沙星E.头孢菌素
贷款发放的原则包括()。
与债券信用等级有关的利率因素是()。
衡量一个教师是否成熟的主要标志是能否自觉地关注()。
数据库运行环境和参数的调整是数据库优化的重要工作。下列说法错误的是()。
有以下程序structS{intn;inta[20];};voidf(structS*p){inti,j,t;for(i=0;i<p->n-1;i++)for(j=i+1;j<p->n;j++)if(p->a[i]>p->a[j]){
Lookatthestatementsbelowandthefiveextractsontheoppositepagefromnewspaperarticlesabouteconomicdevelopmentofth
A、Thosewholiveinthevirtualworld.B、Thosewhohavetoworklonghours.C、Thosewhoareusedtoonlinetransactions.D、Those
最新回复
(
0
)