首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列齐次线性方程组的基础解系: (3)nχ1+(n-1)χ2+…+2χn-1+χn=0
求下列齐次线性方程组的基础解系: (3)nχ1+(n-1)χ2+…+2χn-1+χn=0
admin
2016-05-09
43
问题
求下列齐次线性方程组的基础解系:
(3)nχ
1
+(n-1)χ
2
+…+2χ
n-1
+χ
n
=0
选项
答案
(1)[*] r(A)=2.因此基础解系的个数为4-2=2,又原方程组等价于 [*] 取χ
3
=1,χ
4
=5,得χ
1
=-4,χ
2
=2;取χ
3
=0,χ
4
=4,得χ
1
=0,χ
2
=1. 因此基础解系为[*] (2)[*] r(A)=2,基础解系的个数为4-2=2, 又原方程组等价于 [*] 取χ
3
=1,χ
4
=2得χ
1
=0,χ
2
=0;取χ
3
=0,χ
4
=19,得χ
1
=1,χ
2
=7. 因此基础解系为[*] (3)记A=(n,n-1,…,1),可见r(A)=1,从而有n-1个线性无关的解构成此方程的基础解系,原方程组为χ
n
=-nχ
1
-(n-1)χ
2
-…-2χ
n-1
, 取χ
1
=1,χ
2
=χ
3
=…=χ
n-1
=0,得χ
n
=-n; 取χ
2
=1,χ
1
=χ
3
=χ
4
=…=χ
n-1
=0,得χ
n
=-(n-1)=-n+1; 取χ
n-1
=1,χ
1
=χ
2
=…=χ
n-2
=0,得χ
n
=-2. 所以基础解系为 (ξ
1
,ξ
2
,ξ
n-1
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Mrw4777K
0
考研数学一
相关试题推荐
设f(x)有连续的导数,f(0)=0且fˊ(0)=b,若函数在x=0处连续,则常数A=_______.
A、 B、 C、 D、 C
以下矩阵可相似对角化的个数为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设f(x1,x2,x3)=(ax1+2x2-3x3)+(x2-2x3)+(x1十ax2-x3)2是正定二次型,则()
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求a,b,λ的值
设A是三阶方阵,且|A-E|=|A+2E|=|2A+3E|=0,则|2A*B-1|=__________.
求空间曲线设L:的弧长.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
下列选项中,单位在填写票据时应当遵守的有()。
治疗狂证火盛伤阴者,应首选
A.1~2天出现B.5~7天出现C.3~5天出现D.4~6天出现E.9~12天出现
()用以确定备用电源或应急电源。
中国的封建统治者通过科举考试选拔官吏,是从()开始的。
北大校办企业产值从1994年的10亿元人民币增加到2000年底的120亿元人民币,每年增幅超过30%,上缴国家利税20亿元,给学校回报近4亿元。
垂直思维是以逻辑与数学为代表的传统思维模式,强调事物的确定性,从前提作出严谨推导;水平思维则注重创新,考虑事物多种选择的可能性,追求思考的丰富性。根据上述定义,下列选项属于水平思维应用的是:
联系我国法治建设的实际,论述法律对我国新时期社会发展理念的体现、保障和促进作用。
SupposeyouacceptthepersuasivedatathatinequalityhasbeenrisingintheUnitedStatesandmostadvancednationsinrecent
Bothstripminingandquarrying______exposuretotheearth’ssurface.
最新回复
(
0
)