设二次型f=x12+x22+x32—4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。

admin2018-12-29  26

问题 设二次型f=x12+x22+x32—4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。

选项

答案二次型及其标准形的矩阵分别是 [*] 由于是用正交变换化为标准形,故A与B不仅合同而且相似。由1+1+1=3+3+b得b= —3。 对λ=3,则有 |3E—A|=[*]= —2(a+2)2=0,因此a= —2(二重根)。 由(3E—A)x=0,得特征向量α1=(1,—1,0)T,α2=(1,0,—1)T。 由(—3E—A)x=0,得特征向量α3=(1,1,1)T。 因为λ=3是二重特征值,对α1,α2正交化有 β11=(1,—1,0)T, β2=[*]。 单位化,有 [*] 经正交交换x=Cy,二次型化为3y12+3y22—3y32

解析
转载请注明原文地址:https://kaotiyun.com/show/FRM4777K
0

最新回复(0)