首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
admin
2017-06-14
59
问题
已知A是3×4矩阵,r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(1,-1,a,5)
T
,α
3
=(2,a,-3,-5)
T
,α
4
=(-1,-1,1,a)
T
线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
选项
答案
因为A是3×4矩阵,且r(A)=1,所以齐次方程组Ax=0的基础解系有n-r(A)=3个解向量.又因α
1
,α
2
,α
3
,α
4
线性相关,且可以表示Ax=0的任一解,故向量组α
1
,α
2
,α
3
,α
4
的秩必为3,且其极大线性无关组就是Ax=0的基础解系.由于 [*] 当且仅当a=-3,4或1时,r(α
1
,α
2
,α
3
,α
4
)=3,且不论其中哪种情况,α
1
,α
2
,α
3
必线性无关. 所以α
1
,α
2
,α
3
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Zu4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱仪装有3件合格品.从甲箱中任取3件产品放入乙箱后,乙箱中次品件数X的数学期望=__________;(2)从乙箱中任一件产品是次品的概率=_____________.
设随机变量X和Y都服从正态分布,且它们不相关,则
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.令P=(α1,α2,α3),求p-1AP.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
随机试题
下列不是计算机存储器容量的常用单位________。
患者,女,29岁,已婚。经期前后不定,量少,色淡,质稀,头晕耳鸣,腰痛如折,夜尿多,舌淡苔薄白,脉沉弱。治疗应首选
光镜下见子宫颈粘膜上皮全层异型增生并延伸到腺体,病理性核分裂相多见,但病变尚未突破基底膜,应诊断为
男,5岁,于夏季突然出现高热,2h后抽搐,面色灰暗,四肢凉,血压下降,心肺未见异常。脑膜刺激征阴性。最可能的诊断为()
关于施工合同解除的说法,正确的是()。
新企业进入一个行业的可能性大小,取决于()。
在融资租赁合同中,承租人应履行占有租赁物期间的维修义务。()
下列各项中属于流动资产的有()。
简述企业当年净利润的分配方式和分配次序。
DearSirs,Thisisthethirdmonthrunningthatyourdeliveryhasbeenlateinarriving.Ourcurrentorderforstationeryis
最新回复
(
0
)