首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明: (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明: (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
admin
2018-04-14
66
问题
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,
f(x)/x<0。证明:
(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f"(x)+[f’(x)]
2
=0在区间(0,1)内至少存在两个不同的实根。
选项
答案
(Ⅰ)由于[*]f(x)/x<0,则由函数极限的局部保号性可知,存在一个δ>0,使得当x∈(0,δ)时,f(x)/x<0,则f(δ/2))<0。 又由于f(1)>0,所以由零点定理可知,方程f(x)=0在(0,1)内至少有一个实根。 (Ⅱ)令F(x)=f(x)f’(x),则F’(x)=f(x)f(x)+[f’(x)]
2
。 由[*]f(x)/x<0可知,f(0)=[*]f(x)/x.x=0。 又由(Ⅰ)可知:至少存在一点x
0
∈(0,1),使得f(x
0
)=0。 由罗尔定理可知:至少存在一点ξ
1
∈(0,x
0
),使得f’(ξ
1
)=0,从而F(0)=F(ξ
1
)=F(x
0
)=0。 再由罗尔定理可知:至少存在一点ξ
2
∈(0,ξ
1
)和ξ
3
∈(ξ
1
,x
0
),使得F’(ξ
2
)=F’(ξ
3
)=0。 故方程F’(x)=f(x)f"(x)+[f’(x)]
2
=0在(0,x
0
)[*](0,1)内至少存在两个不同的实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/FRk4777K
0
考研数学二
相关试题推荐
内有且只有一个实根。
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设f(x)是连续函数,F(x)是f(x)的原函数,则
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
微分方程y"+y=x2+1+sinx的特解形式可设为
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_________.
设f(x)=,求f(x)的间断点并判断其类型.
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
证明:区间(a,b)内单调函数f(x)若有间断点,则它必为第一类间断点.
随机试题
钩体病首剂青霉素治疗后2~4小时突起发冷、寒战、高热,全身痛及头痛,心率、呼吸加快,严重者发生休克钩体病患者早期出现高热、全身酸痛的机制是由于
患者,女,38岁。眩晕,自汗;心悸,失眠,多梦,腹胀便溏,食少,体倦,面色无华。其病理变化是
A.凡未被病原微生物污染的区域B.经灭菌处理且未被污染的区域C.用物理方法清除物体表面的污垢D.通过物理或化学方法灭菌后保持无菌状态的物品E.经过灭菌处理但又被污染的区域无菌区()
长江中游某河段为典型的汊道浅滩,经常出现碍航现象,严重影响船舶航行安全,必须进行治理。采取的工程措施为护滩和筑坝。某施工单位承担了该整治工程的施工任务,并按照设计文件的要求进行施工,当完成系结压载软体排护底分项工程后,施工单位要求监理工程师进行质量评定,监
小学生根据课文描述想象出雷锋叔叔的模样,这属于()。
奥组委总部设在()。
在一些没有护堤常识的人看来,那细小的裂缝也许是_______的,老农也_______太大惊小怪了吧。填入横线部分最恰当的一项是()。
WTO的服务贸易规则中规定的商业存在是指服务提供者在外国建立商业机构,为消费者服务。()
在信息系统工程监理过程中,专家发挥了重要的作用和价值。以下_________不属于专家的职责。
A、Hesoldhisinventiontomakemoney.B、Hepreferredinventiontoteaching.C、Hewashonoredwithanawardforhisteachingmet
最新回复
(
0
)