首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明: (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明: (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
admin
2018-04-14
45
问题
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,
f(x)/x<0。证明:
(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f"(x)+[f’(x)]
2
=0在区间(0,1)内至少存在两个不同的实根。
选项
答案
(Ⅰ)由于[*]f(x)/x<0,则由函数极限的局部保号性可知,存在一个δ>0,使得当x∈(0,δ)时,f(x)/x<0,则f(δ/2))<0。 又由于f(1)>0,所以由零点定理可知,方程f(x)=0在(0,1)内至少有一个实根。 (Ⅱ)令F(x)=f(x)f’(x),则F’(x)=f(x)f(x)+[f’(x)]
2
。 由[*]f(x)/x<0可知,f(0)=[*]f(x)/x.x=0。 又由(Ⅰ)可知:至少存在一点x
0
∈(0,1),使得f(x
0
)=0。 由罗尔定理可知:至少存在一点ξ
1
∈(0,x
0
),使得f’(ξ
1
)=0,从而F(0)=F(ξ
1
)=F(x
0
)=0。 再由罗尔定理可知:至少存在一点ξ
2
∈(0,ξ
1
)和ξ
3
∈(ξ
1
,x
0
),使得F’(ξ
2
)=F’(ξ
3
)=0。 故方程F’(x)=f(x)f"(x)+[f’(x)]
2
=0在(0,x
0
)[*](0,1)内至少存在两个不同的实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/FRk4777K
0
考研数学二
相关试题推荐
证明:
证明f(x)是以π为周期函数。
A、a=b或a+2b=0B、a=b或a+2b≠0C、a≠b且a+2b=0D、a≠b且a+2b≠0C
设D是位于曲线下方、x轴上方的无界区域.求区域D绕x轴旋转一周所成旋转体的体积V(a);
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
设函数f(x)=x2(x-1)(x-2),则f’(x)的零点个数为
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设,求f(x)的间断点并指出其类型.
(2003年)y=2χ的麦克劳林公式中χn项的系数是_______.
随机试题
案情:大岭市中级人民法院对武某、康某、尹某、杜某四人虚开增值税专用发票一案作出判决,武某被判处死刑,并处没收财产;康某被判处无期徒刑,并处罚金15万元;尹某被判处有期徒刑3年、缓刑4年,并处罚金10万元;杜某被判决免除刑事处罚。一审宣判后,人民法院立即对武
做器械胸前下拉练习的下拉动作时,肩关节的运动是()。
理想气体状态方程适用于高压低温下气体的计算。()
在下列立法表述中,哪些属于除斥期间的规定?()
张某、方某共同出资,分别设立甲公司和丙公司。2013年3月1日,甲公司与乙公司签订了开发某房地产项目的《合作协议一》,约定如下:“甲公司将丙公司10%的股权转让给乙公司,乙公司在协议签订之日起三日内向甲公司支付首付款4000万元,尾款1000万元在次年3月
对于企业租出并按出租协议向承租人提供保安和维修等其他服务的建筑物,是否属于投资性房地产的说法正确的是()。
在PowerPoint中,如需要在当前的幻灯片中加入自己的相片,要用到()菜单。
朝鲜族的传统菜肴是()。
各项公安专业工作应该结合自身工作特点开展群众工作,使群众工作成为公安专业工作的有机组成部分。()
Conversation:Afterreadingthefollowingpassage,youwillfind5questionsorunfinishedstatements,numbered36through40.F
最新回复
(
0
)