首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度为fX|Y(x|y)( )
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度为fX|Y(x|y)( )
admin
2019-01-14
37
问题
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,f
X
(x),f
Y
(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度为f
X|Y
(x|y)( )
选项
A、f
X
(x)
B、f
Y
(y)
C、f
X
(x)f
Y
(y)
D、
答案
A
解析
由(X,Y)服从二维正态分布,且X与Y不相关,故X与Y独立,∴(X,Y)的概率密度f(x,y=f
X
(x).f
Y
(y),
(x,y)∈R
2
.
得
故选(A).
转载请注明原文地址:https://kaotiyun.com/show/FVM4777K
0
考研数学一
相关试题推荐
设向量α1=(1,-1,2,-1)T,α2=(-3,4,-1,2)T,α3=(4,-5,3,-3)T,α4=(-1,A,3,0)T,β=(0,k,5,-1)T.试问λ,K取何值时,β不能由α1,α2,α3,α4线性表出?λ,K取何值时,β可由α1,α2,α
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明:若(k1,k2,…,kn)T是Ax=B的任一解,则kn=1.
两个4阶矩阵满足A2=B2,则
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1一α的值
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(I)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X—Y是否相关,是否独
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
设X1,X2,…X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2。服从χ2分布,并求自由度m.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:(1)第三次取得次品;(2)第三次才取得次品;(3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
设三事件A,B,C两两独立,则A,B,C相互独立的充分必要条件是:()
A、 B、 C、 D、 C因为以2为周期且为奇函数,所以因此正确选项为C。
随机试题
A.保湿剂B.油脂性基质C.水溶性基质D.抗氧剂E.防腐剂栓剂中的对羟基苯甲酸酯类是用作()。
做器械推举练习,膝关节伸时,髋关节的运动是()。
根据资本不同部分在剩余价值生产中的不同作用,可以把全部资本划分为()
治疗阴虚血燥型闭经,应首选的方剂是()
A、乳剂破裂B、乳剂絮凝C、乳剂分层D、乳剂转相E、乳剂酸败乳化剂类型改变导致
某公司拥有一栋旧写字楼,《房屋所有权证》记载的建筑面积为460m2。因年久失修,经房屋鉴定部门鉴定为危房,由上级总公司批准改建,建筑面积可增至600m2,该公司认为建600m2的写字楼经济上不合算,擅自建成建筑面积1000m2的写字楼。现该公司欲以该新建写
采用工程项目总承包模式的建设工程项目,发包人可将()等一系列工作全部发包给一家承包单位。
近年来的舌尖安全问题不得不让人们反思,究其原因有多方面:企业大打“价格战”,为降低成本非法使用劣质、有毒原料,为求利润丧失道德良心,而违法成本过低使企业以身试法;法律不健全,监管不到位,各监管部门职能交叠,监管边界模糊,易出现监管盲区;消费者维权意识薄弱,
EnvironmenthastakenratherabackseatpoliticallysincetheEarthsummitinRiodeJaneironearlyfiveyearsago.【C1】______t
Todayinmind-bendinglycoolstuffthatnanoparticles(纳米粒子)cando:AteamofresearchersatRiceUniversityinTexashasdemonst
最新回复
(
0
)