首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2. 证明:对于0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)].
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2. 证明:对于0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)].
admin
2021-11-25
57
问题
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2.
证明:对于0<x<a,存在0<θ<1,使得∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)-f(-θx)].
选项
答案
令F(x)=∫
0
x
f(t)dt+∫
0
-x
f(t)dt,显然F(x)在[0,x]上可导,且F(0)=0,由微分中值定理,存在0<θ<1,使得F(x)=F(x)-F(0)=F’(θx)x,即 ∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)-f(-θx)].
解析
转载请注明原文地址:https://kaotiyun.com/show/Fay4777K
0
考研数学二
相关试题推荐
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设a1,a2...an为n个n维列向量,证明:a1,a2,...an线性无关的充分必要条件是.
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设A为实对称矩阵,且A的特征值都大于零,证明:A为正定矩阵。
设P为可逆矩阵,A=PTP.证明:A是正定矩阵。
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A为n阶矩阵且r(A)=n-1,证明:存在常数k,使得(A*)2=kA*.
随机试题
人民法院受理债务人甲公司破产申请时,乙公司依照其与甲公司之间的买卖合同已向买受人甲公司发运了该合同项下的货物,但甲公司尚未支付价款。乙公司得知甲公司破产申请被受理后,立即通过传真向甲公司的管理人要求取回在运途中的货物。管理人收到乙公司传真后不久,即收到了乙
动脉粥样硬化病变中的脂质来源于:
下述指标中对渗出液诊断最有帮助的是()。
拆除无固定支撑架的大模板时,可采取将模板直接靠在墙体结构上作为临时固定措施。()
凡带有支柱或框架式钢结构的高炉,其钢结构与炉壳之间采取的连接方式是()。
如果企业的资金来源全部为自有资金,且没有优先股存在,则企业的财务杠杆系数()。
企业在分析投资方案时,有关所得税率的数据应根据()来确定。
一般资料:求助者,男,33岁,公司职员。案例介绍:今年春节前求助者的父亲在老家突发心脏病去世,求助者将母亲接来同住。最初的一个多月的时间里,妻子和母亲还能够和平相处,但随着时间的推移,双方的矛盾逐渐显现出来;从日常的饮食起居到孩子的培养教育都能成
办公室按零售价花费360元购买了一批笔记本。如果按批发价购买,则每个笔记本能便宜3元,且恰好能多购买20个。则该笔记本零售价为()元。
I’msureyoursuggestionwill______theproblem.
最新回复
(
0
)