首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-05-17
65
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即γ
1
=(1,2,一1,0)
T
是Ax=β的解。同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,
η
2
=γ
3
一γ
2
=(1,2,0,1)
T
,
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/FgV4777K
0
考研数学二
相关试题推荐
证明:当0<χ<1时,(1+χ)ln2(1+χ)<χ2.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为_______.
微分方程的通解为__________。
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
(A+B)2=A2+2AB+B2成立的充分必要条件是().
随机试题
下列关于针刺捻转法的说法。错误的是
当混凝土结构施工质量不符合要求时,经()检测鉴定达到设计要求的检验批,应予以验收。
下面()属于可变更或撤销的合同。
2018年2月,教育部等五部门印发《教师教育振兴行动计划(2018—2022年)》提出要将学习贯彻习近平总书记对教师的殷切希望和要求作为()的首要任务和重点内容。
公安机关的人民警察以()名义开展公安工作。
鸦片战争后,中国逐步被卷入资本主义世界市场。得出该结论的主要依据不包括()。
阅读下列材料,回答问题。材料一:2017年6月27日,夏季达沃斯论坛在大连开幕。“在第四次工业革命中实现包容性增长”是本次夏季达沃斯论坛的主题,同时也为新工业革命时代中的全球经济增长设置了新航标。当前,以“人工智能”“工业4.0”等新兴
[2000年GRK真题](1)一(2)题基于以下题干:小李:如果在视觉上不能辨别艺术复制品和真品之间的差异,那么复制品就应该和真品的价值一样。因为如果两件艺术品在视觉上无差异,那么它们就有相同的品质。要是它们有相同的品质,它们的价格就应该相等。小王:你对艺
下列叙述中正确的是
【B1】【B6】
最新回复
(
0
)