首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( )
admin
2019-08-12
63
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
≠0。
B、λ
2
≠0。
C、λ
1
=0。
D、λ
2
=0。
答案
B
解析
方法一:设k
1
α
1
+k
2
A(α
1
+α
2
)=0,由题设条件得(k
1
+λ
1
k
2
)α
1
+λ
2
k
2
α
2
=0,由于α
1
,α
2
是属于A的不同特征值的特征向量,故α
1
,α
2
线性无关,从而
所以,α
1
,A(α
1
+α
2
)线性无关
k
1
=k
2
=0
行列式
≠0,故选B。
方法二:由于(α
1
,A(α
1
+α
2
))=(α
1
,λ
1
α
1
+λ
2
α
2
)=(α
1
,α
2
)
,故α
1
,A(α
1
+α
2
)线性无关,即(α
1
,A(α
1
+α
2
))的秩为2的充要条件为
≠0,即λ
2
≠0,故选B。
转载请注明原文地址:https://kaotiyun.com/show/FiN4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是()
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
设p(x),q(x)与f(x)均为连续函数,设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通
设矩阵矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵,试求出矩阵X
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分取得最小值时p,q的值.
求其中D是由曲线xy=2,直线y=x一1及y=x+1所围成的区域.
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
设F(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)TT,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
随机试题
Thefirstlinereads;"Shesitsonthebedwithahelplessexpression.Whatisyourname?Au-guste.Lastname?Auguste.Whatis
A.CEAB.p—ANCAC.c—ANCAD.ASE.AFP结肠癌
A.肺阴虚证B.热病伤津C.二者均是D.二者均非西洋参的主治病证是()
关于黄连阿胶汤证治法的论述最确切的一项是
患者,女,32岁。因外阴瘙痒就诊,医生妇科检查发现阴道分泌物呈黄白稀薄泡沫状。初步诊断为
下列腧穴中,属于手太阳小肠经的是
以下项目中,属于期间费用的有()。
从哲学的角度看,不可否认原始儒家思想中存在很多人性的光辉,而从历史的角度看,儒家思想世俗化之后构建的传统文化,最明显的缺陷就在于没有提供一种包含起码的人道主义精神的底线伦理,当我们在批判传统文化和创造新文化的时候,应该在人道主义的框架内建立一种起码的道德底
下列叙述中正确的是()。
Someanthropologistsclaimthatafewapeshavebeentaughtarudimentarysignlanguages,butskepticsarguethattheapesareo
最新回复
(
0
)