首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=________.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=________.
admin
2018-07-31
39
问题
设α
1
,α
2
,α
3
均为3维列向量,记矩阵A=(α
1
,α
2
,α
3
),B=(α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
).如果|A|=1,那么|B|=________.
选项
答案
2.
解析
对行列式|B|依次作等值变形(用c
i
+kc
j
表示第i列加上第j列的k倍)c
2
一c
1
,c
3
一c
1
,得
|B|=|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
2
+8α
3
|
再作等值变形c
3
一2c
2
,得
|B|=|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
|=2|α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
|
=2|α
1
+α
2
,α
2
,α
3
|=2|α
1
,α
2
,α
3
|=2|A|=2.
转载请注明原文地址:https://kaotiyun.com/show/Fwg4777K
0
考研数学一
相关试题推荐
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A=,求a,b及正交矩阵P,使得PTAP=B.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设n阶方阵A的每行元素之和为a,|A|≠0,则(1)a≠0;(2)A-1的每行元素之和为a-1.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
下列属于领导体制结构中存在的关系有
下列哪种细胞不是通过变形运动离开血管的
A.不同的核酸链经变性处理,它们之间形成局部的双链B.一小段核苷酸聚合体的单链,用放射性同位素或生物素来标记其末端或全链C.运输氨基酸D.单股DNA恢复成双股DNA核酸杂交是指
酸蚀的作用不包括
化痰止咳平喘药主要人()。
港航工程钢筋混凝土结构用钢有()。
企业在确定应收款项减值的核算方法时,应根据本企业实际情况,按照成本效益原则,在备抵法和直接转销法之间合理选择。()
(暨南大学2011年初试真题)全额累进税率与超额累进税率计算方法的差异。
A、大金字塔有40层B、大金字塔有2700年历史C、最重的石块有1.5吨D、石块大小不同D录音中说最大的金字塔“由230万块大小不等的石块砌成”,所以选D。
Slaverywas______intheU.S.inthe19thcentury.
最新回复
(
0
)