首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求该微分方程.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求该微分方程.
admin
2021-01-19
94
问题
已知y
1
=xe
x
+e
2x
,y
2
=xe
x
+e
-x
,y
3
=xe
x
+e
2x
-e
-x
是某二阶线性非齐次微分方程的三个解,求该微分方程.
选项
答案
设所求方程为y"+py’+qy=f(x),只需求出p,q,f(x)即可. 由线性方程解的性质,得y
1
-y
3
=e
-x
,(y
1
-y
2
)+(y
1
-y
3
)=e
2x
是对应的齐次方程y"+py’+qy=0的两个线性无关的解,所以 λ
1
=-1,λ
2
=2是特征方程λ
2
+pλ+q=0的根,由根与系数的关系,得P=-1,q=-2.将y
1
=xe
x
+e
2x
代入方程y"+Py’+qy=f(x),可得 f(x)=(1—2x)e
x
.所求方程为 y"-y’-2y=(1—2x)e.
解析
[分析] 由于二阶常系数线性齐次微分方程由其特征方程唯一确定,因此可先由齐次方程的解得到对应的特征根,再由根与系数的关系确定特征方程,从而得到齐次微分方程.
[评注1] 对于二阶常系数线性齐次微分方程y"+py’+qy=0,函数Ae
αx
是其解的充要条件为λ=α是特征方程λ
2
+pλ+q=0的根;函数Aesinβx,Be
αx
cosβx,或e
αx
(Asinβx+Bcosβx)是其解的充要条件为λ=α土β是特征方程λ
2
+pλ+q=0的根.
[评注2] 对于本题,由于y
1
-y
3
=e
-x
,(y
1
-y
21
)+(y
1
-y
3
)=e
2x
是对应的齐次方程y"+py’+qy=0的两个线性无关的解,y
2
+(y
3
-y
1
)=xe
x
是对应的非齐次方程的一个特解,所以,所求方程的通解为y=C
1
e
2x
+C
2
e
-x
+xe
x
.
[评注3] 易求出y’=2C
1
e
2x
-C
2
e
-x
+xe
x
+e
x
,y"=4C
1
e
2x
+C
2
e
-x
+xe
x
+2e
x
,从y,y’,y"中消去C
2
,C
2
,即可得到所求的二阶方程为y"-y’-2y=(1—2x)e
x
.
转载请注明原文地址:https://kaotiyun.com/show/G384777K
0
考研数学二
相关试题推荐
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件
已知三角形周长为2p,试求次三角形绕自己的一边旋转时所构成的旋转体的体积的最大值.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
要造一个圆柱形无盖水池,使其客积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
微分方程y’’一3y’+2y=2ex满足=1的特解为_________。
已知当x→0时,一1与cosx一1是等价无穷小,则常数a=_______.
(1988年)=_______.
随机试题
企业发生的公益性捐赠支出,在年度利润总额________以内的部分,准予在计算应纳税所得额时扣除。
改良Barthel指数包括多少项内容
脾胃虚寒型呕吐治宜痰饮内阻型呕吐治宜
证券发行
(),是咨询单位为业主服务的最基本、最广泛的形式之一。
加筋土挡土墙的组成有()。
下列有关审计工作底稿归档期限的说法中,正确的是()。
质量检验记录是________的证据。
已知,求(1+sinθ)(2+cosθ)的值.
Amajorroleofcomputersciencehasbeentoalleviateproblems,mainlybymakingcomputersystemscheaper,faster,morereliabl
最新回复
(
0
)