首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
admin
2019-06-28
34
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
=(1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求
矩阵C=(A
T
,B
T
)的秩。
选项
答案
线性方程组(3)[*] 与线性方程组x
T
(A
T
,B
T
)=0等价,而方程组(3)的基础解系只含一个向量,故矩阵C=(A
T
,B
T
)的秩r(C)=5—1=4。
解析
转载请注明原文地址:https://kaotiyun.com/show/PZV4777K
0
考研数学二
相关试题推荐
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设二次型f(x1,x2,x3)=a12+ax22+(a一1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求a,b的值;
I(χ)=在区间[-1,1]上的最大值为_______.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=_______.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
随机试题
试证明数列{}发散.
可导致纵隔扑动的胸部损伤类型是()
气囊导尿管最常用于
河流水质模型复氧系数K2的单独估值方法常用()。
【2008】某分包商承包了某专业分项工程,分包合同中规定:工程量为2400m3;合同工期为30天,6月11日开工,7月10日完工;逾期违约金为1000元/天。该分包商根据企业定额规定:正常施工情况下(按计划完成每天安排的工作量),采用计日工资的曰工资标准
国家助学贷款的贷款对象是中华人民共和国境内的(不含香港特别行政区和澳门特别行政区、台湾地区)普通高等学校中经济确实困难的全日制()。
对一项发明创造的专利申请权或被授予的专利权发生争议的,当事人可以请求专利管理机关处理,也可以直接向人民法院起诉。()
2009年法国航空公司一架客机失事。如果法国及其他多国没有采取积极的搜救行动,就不会尽早发现失事飞机的残骸。如果失事飞机设计公司提供技术支持并且派专家参与失事原因分析,那么关于失事事件的调查报告就会更客观。以上陈述如果为真,以下哪项不可能为假?
人们通过同位素测定法可以准确地得到地球的绝对年龄。很早以来,人们发现岩石中放射性同位素都会自动并以不变的速率逐渐衰变为非放射性的子体同位素,同时释放出能量。只要温度、压力等因素不变,人们就可以获得准确的数值。当然,这种方法也有缺点,在进行同位素年龄测定时,
Lawyersarelessthan1%ofAmericanadults,【C1】______theyarewell-representedingovernment.Boththepresidentandthevice-p
最新回复
(
0
)