首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. 求f(x)的表达式;
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. 求f(x)的表达式;
admin
2019-06-28
59
问题
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2e
x
.
求f(x)的表达式;
选项
答案
齐次微分方程f’’(x)+f’(x)一2f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
-2x
.再由 f’’(x)+f(x)=2e
x
得 2C
1
e
x
一3C
2
e
-2x
=2e
x
.因此可知 C
1
=1,C
2
=0.所以f(x)的表达式为f(x)=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/p4V4777K
0
考研数学二
相关试题推荐
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ1线性无关。
设A,B为同阶方阵。举一个二阶方阵的例子说明(I)的逆命题不成立;
设f(x)=,则f(x)的间断点为x=_________。
设f(x)是连续函数,且f(t)dt=x,则f(7)=______.
若函数f(χ)在χ=1处的导数存在,则极限=_______.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
设函数u(x,y)在有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足=0,则()
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日无故障,可获利10万元;发生一次故障仍可获利5万元;发生二次故障所获利润O元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?
随机试题
撤销权自债权人知道或者应当知道撤销事由之日起()年内行使。
工作票终结手续应由工作值班人员负责办理。()
计算机系统的硬件主要包括________、运算器、存储器、输入设备、输出设备五大部分组成。
冠心病心绞痛的心电图表现哪项不正确
辩护律师从何时起可以开始查阅案件所指控的犯罪事实的材料?
甲杯中有浓度17%的溶液400克,乙杯中有浓度为23%的同种溶液600克,现在从甲、乙取出相同质量的溶液,把甲杯取出的倒入乙杯中,把乙杯取出的倒入甲杯中,使甲、乙两杯溶液的浓度相同,问现在两杯溶液浓度是多少?()
我国就业服务体系的内容包括()。
研究表明,小学生道德情感的发展具有明显转折的时期一般是在()年级。
Fiercelyindependent,90year-oldVincenziaRinaldiwouldn’tconsiderahomehealthaideornursinghome.SoLouisCritelli,her
OlympicGamesandSpiritToday,theOlympicGamesaretheworld’slargestpageant(盛典)ofathleticskillandcompetitivespi
最新回复
(
0
)