首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22一y32,其中P=(e1,e2,e3).若Q=(x1,x2,x3),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22一y32,其中P=(e1,e2,e3).若Q=(x1,x2,x3),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
admin
2016-04-11
25
问题
设二次型f(x
1
,x
2
,x
3
)在正交变换x=Py下的标准形为2y
1
2
+y
2
2
一y
3
2
,其中P=(e
1
,e
2
,e
3
).若Q=(x
1
,x
2
,x
3
),则f(x
1
,x
2
,x
3
)在正交变换x=Qy下的标准形为
选项
A、2y
1
2
—y
2
2
+y
3
2
.
B、2y
1
2
+y
2
2
一y
3
2
.
C、2y
1
2
—y
2
2
—y
3
2
.
D、2y
1
2
+y
2
2
+y
3
2
.
答案
A
解析
设二次型的矩阵为A,则由题意知矩阵P的列向量e
1
,e
2
,e
3
是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,一1.即有
Ae
1
=2e
1
,Ae
2
=2e
2
,Ae
3
=2e
3
从而有
AQ=A(e
1
,—e
3
,e
2
)=(Ae
1
,—Ae
3
,e
2
)=(2e
1
,—(—e
3
),e
2
)
=(e
1
,—e
3
,e
2
)
矩阵Q的列向量e
1
,—e
3
,e
2
仍是A的标准正交的特征向量,对应的特征值依次是2,一1,1.矩阵Q是正交矩阵,有Q
—1
=Q
T
,上式两端左乘Q
—1
,得
Q
—1
AQ=Q
T
AQ=
从而知f在正交变换x=Py下的标准形为f=2y
1
2
一y
2
2
+y
3
2
.于是选(A).
转载请注明原文地址:https://kaotiyun.com/show/G8w4777K
0
考研数学一
相关试题推荐
已知三阶方阵A,B满足关系式E+B=AB,的三个特征值分别为3,-3,0,则|B-1+2E|=_______.
设曲线L的参数方程为x=φ(t)=t-sint,y=φ(t)=1-cost(0≤t≤2π)。(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;(Ⅱ)求曲线L与x轴所围图形绕y轴旋转一周所成旋转体的体积V。
设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如右图所示,则曲线y=f(x)的拐点个数为().
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求D绕x轴旋转一周所得旋转体的体积V
设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则().
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,又为样本均值,记:
随机试题
下列关于砂的叙述有误的是()。
在Word2003的文档中,每个段落都有自己的段落标记,段落标记的位置在__________。()
当氢质子放入静磁场后,下列情况正确的是
下列关于腱反射的叙述,正确的是
在下列各项中,属于医患关系暂时不协调的是
黄酮类化合物带I的产生是由于若B环有OH取代,则
以下关于公民权利、义务的说法中,()符合《宪法》规定。
一名大学生自愿到边远山区进行支教的行为说明()。
经济学理论认为,丰富的自然资源可能是经济发展的诅咒而不是祝福,大多数自然资源丰富的国家比那些资源稀缺的国家经济增长得更慢。历史表明,避免“资源诅咒”是十分困难的。而且并非如很多人所认为的,只有尼日利亚等欠发达国家才会受这一诅咒的困扰。由此可以推出:
教育目的
最新回复
(
0
)