首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,α3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,α3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P
admin
2020-03-16
66
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,α
3
=2α
2
+3α
3
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设条件,有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 所以,B=[*]. (Ⅱ)因为α
1
,α
2
,α
3
是线性无关的三维列向 量.可知矩阵C=(α
1
,α
2
,α
3
)可逆,所以由AC=CB,得C
-1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值. 由|λE-B|=[*]=(λ-1)
2
(λ-4)=0 得矩阵B的特征值,也即矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=4. (Ⅲ)对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)X=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E-B)x=0,得基础解系 ξ
3
=(0,1,1)
T
. 令矩阵 Q=(ξ
1
,ξ
2
,ξ
3
)=[*] 则有 Q
-1
BQ=[*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 P=CQ=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
) 则有P
-1
AP=Q
-1
BQ=diag(1,1,4),为对角矩阵,故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/GI84777K
0
考研数学二
相关试题推荐
设.
求下列不定积分:
设α=(a1,a2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=∧为对角矩阵.
设矩阵B=P一1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
[2012年]设计算行列式∣A∣.
求极限ω=.
设随机变量x的概率密度f(x)=,求(1)常数k;(2)若使P{X≥a}=0.4,求常数a的取值范围;(3)求Y=|x|的概率密度fY(y).
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0.令h(x)=g(x)+g(一x),证明:在区间[0,a]上h’(x)≥0,且仅当x=0时,h’(x)=0;
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
计算行列式
随机试题
万能外圆磨床的砂、轮架除了具有主轴回转主运动和横向进给运动外,还可绕滑鞍定位孔中心做回转运动。()
下列与SLE病情活动性无关的实验室检查是
A.关节病变B.心包内纤维蛋白性炎症C.心肌内Aschoff小体D.心内膜炎对风湿病最有诊断意义的病变是
常用做定影剂的物质是
犬细小病毒病的流行病学特征是()
男性,21岁,阵发性腹部绞痛,呕吐1周,伴腹胀,无排气排便,查体:腹隆,脐周压痛,肠鸣音亢进,考虑可能的诊断是
关于半强型有效市场,下列描述正确的是()。
课堂教学是学科教学中落实素质教育的主渠道.在课堂教学中如何将素质教育的思想观念落实为具体的教学操作行为,是目前制约学科教学改革的主要因素。而教学模式是体现教育教学思想的一种教学活动操作系统,是教育教学思想在教学活动流程中的一种简明概括。它是教学理论和教学实
资源整合:市场主体为实现特定目的,将各种资源进行优化配置,综合利用,使之发挥良好效益的一系列措施办法。以下不属于资源整合的是()。
Whatdoesthewomando?
最新回复
(
0
)