[2018年] 设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.

admin2019-05-10  33

问题 [2018年]  设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.

选项

答案设曲线的参数方程解定函数y=f(x),0≤x≤2π,积分区域D如下图所示,有 [*] [*](x+2y)dxdy=∫0dx∫0f(x)(x+2y)dy=∫0(xy+y2)∣0f(x)dx =∫0{xf(x)+f2(x))dx. 由已知x=t—sint,y=1一cost代入上式可得 ∫0{xf(x)+f2(x))dx=∫0{(t一sint)(1一cost)+(1一cost)2}d(t—sint) =∫0{(t一sint)(1一cost)2+(1一cost)3}dt =∫0{t(1一cost)2一sint(1一cost)2+(1一cost)3)dt =∫0t(1一cost)2dt—∫0sint(1一cost)2dt+∫0(1一cost)3dt. 令t=u+π,则上式可化为 ∫π(u+π)(1+cosu)2du+∫πsinu(1+cosu)2du+∫π(1+cosu)3du =∫π(1+cosu)2du+∫ππ(1+cosu)2du+∫πsinu(1+cosu)2du+∫π(1+cos)3du =∫π(1+2cosu+cos2u)du+∫π(1+3cosu+3cos2u+3cos3u)du =∫ππ(1+2cosu+[*])du+∫π[1+3cosu+[*]+cosu(1一sin2u]du =3π2+5π+∫π(1-sin2u)d(sinu)=3π2+5π, 其中,利用奇偶性可知, ∫πu(1+cosu)2du=0,∫πsinu(1+cosu)2du=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/cVV4777K
0

最新回复(0)