首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式 f(1+sinχ)-3f(1-sinχ)=8χ+α(χ) 其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式 f(1+sinχ)-3f(1-sinχ)=8χ+α(χ) 其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
admin
2019-06-09
97
问题
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式
f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)
其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6))处的切线方程.
选项
答案
[*] 所以f′(1)=2 由于f(χ+5)=f(χ),所以f(6)=f(1)=0,f′(6)=f′(1)=2 故所求切线方程为y=2(χ-6) 即2χ-y-12=0
解析
转载请注明原文地址:https://kaotiyun.com/show/7lV4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程2y3一2y2+2xy—x2=1所确定的函数,求y=y(x)的极值.
设f(χ)在(a,b)内可导,证明:χ,χ0∈(a,b)且χ≠χ0时,f′(χ)在(a,6)单调减少的充要条件是f(χ0)+f′(χ0)(χ-χ0)>f(χ).(*)
求下列不定积分:
用比较判别法判定下列级数的敛散性:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(η)=f(0);
设x→a时,f(x)与g(x)分别是x—a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x—a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
在曲线y=x2(0≤x≤1)上取一点(t,t2)(0<t<1),设A1是由曲线y=x2(0≤x≤1),直线y=t2和x=0所围成图形的面积;A2是由曲线y=x2(0≤x≤1),直线y=t2和x=1所围成图形的面积,则t取________时,A=A1+A2取
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1;
讨论函数f(χ)=的连续性.
设f(x)连续,φ(x)=∫01f(xt)dt,且=A.求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
单向阀通常分()种。
关于滤过的影响因素的不正确表述是
下列依法享有对直辖市中级人民法院院长任免权的机关是?()
工序的现状是通过采用()等方法分析得到的。
完全互补品的无差异曲线形状是()。
MrBrownwasgoingawayforaweek.Beforeheleft,hesaidtohisson,"ifanyoneasksforme,youcantellhimthatyourfathe
内地居民结婚,女方应到男方当事人常住户口所在地的婚姻登记机关办理结婚登记。()
在《中华人民共和国著作权法》规定的情形中,使用作品可以不经著作权人许可,不向其支付报酬,但应当指明作者姓名、作品名称,并且不得侵犯著作权人依照《中华人民共和国著作权法》享有的其他权利。这在《中华人民共和国著作权法》上称为:
A、Launchinganinitiativetoincreasetheincomeofcoffeeproducers.B、Eliminatingilliteracyoncropproductionandmarketing
A、Bypayingformealsoneatatime.B、Byborrowingastudent’smealcard.C、Byorderingtheirmealsinadvance.D、Bybuyingaw
最新回复
(
0
)