首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
admin
2018-07-27
31
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列.
选项
答案
取齐次线性方程组 [*] 的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关: 设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
i
T
ξ
j
=0(i=1,…,k;j=1,…,n-k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即 ‖λ
1
α
1
+…λ
k
α
k
‖=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,[*]μ
1
=…=μ
n-k
=0,于是证得 α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列.
解析
转载请注明原文地址:https://kaotiyun.com/show/GPW4777K
0
考研数学三
相关试题推荐
设4阶矩阵A的秩为2,则r(A*)=_____.
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
计算二重积分,其中D是由直线y=x与y轴在第一象限围成的区域.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
设齐次线性方程组只有零解,则a满足的条件是______.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求曲面S介于平面z=0与z=1之间的体积.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球颜色相同.
随机试题
A.情志抑郁,胸胁胀痛,胸闷,善太息B.烦躁不安,胸胁闷胀,惊悸失眠C.头晕胀痛,面红目赤,急躁易怒,舌红苔黄D.头目胀痛,眩晕耳鸣,腰膝酸软,头重脚轻肝气郁结证的临床表现为
下列不符合视力下降而眼底正常的眼病是
对于潜在投标人在阅读()和现场踏勘中提出的疑问,招标人可以书面形式或召开投标预备会或答疑会的方式解答,但需同时将解答以书面方式通知所有购买招标文件的潜在投标人。
中国个人所得税制所规定的应税所得不包括( )。
公司未分配利润在利润中所占比例增大,社会消费曲线就会向下移动。
社会成员经由教育的培养,筛选和提高,可以在不同的社会区域、社会层次、职业岗位以及科层组织之间转化和调动。这种教育功能是()。
如今,每个人都说自己太忙了,但是,这些繁忙好像并不能促使事情的完成,现在,没有完成的工作,没有回的电话,以及错过的约会的数量与这些繁忙发生之前一样多。因此,人们一定没有他们所声称的那样忙。下面哪一条如果正确,最能严重地削弱上述短文中的结论()
设,则必有[].
下列矩阵中不能相似对角化的是
A、Thewomanshouldcheckthebusschedule.B、ThebusesstoprunningonFridays.C、Thebusdoesn’tstopatthecorner.D、Thesche
最新回复
(
0
)