首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明: (1)aij=AijATA=E,且|A|=1; (2)aij=-AijATA=E,且|A|=-1.
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明: (1)aij=AijATA=E,且|A|=1; (2)aij=-AijATA=E,且|A|=-1.
admin
2018-09-25
35
问题
A为n(n≥3)阶非零实矩阵,A
ij
为|A|中元素a
ij
的代数余子式,试证明:
(1)a
ij
=A
ij
<=>A
T
A=E,且|A|=1;
(2)a
ij
=-A
ij
<=>A
T
A=E,且|A|=-1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A
*
,则A
T
A=A
*
A=|A|E.由于A为n阶非零实矩阵,即a
ij
,不全为0,所以 [*] 而tr(AA
T
)=tr(|A|E)=N|A|,这说明|A|>0,在 AA
T
=|A|E两边取行列式,得|A|
n-2
=1,于是|A|=1,故A
T
A=E. 反之,若A
T
A=E且|A|=1,则A
*
A=|A|E=E且A可逆,于是,A
T
A=A
*
A,A
T
=A
*
,即a
ij
=A
ij
. (2)当a
ij
=-A
ij
时,有A
T
=-A
*
,则A
T
A=-A
*
A=-|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以 [*] 在A
T
A=-|A|E两边取行列式得|A|=1,故A
T
A=E. 反之,若A
T
A=E且|A|=-1,由于A
*
A=|A|E=-E,于是,A
T
A=-A
*
A.进一步,由于A可逆,得A
T
=-A
*
,即a
ij
=-A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/GSg4777K
0
考研数学一
相关试题推荐
设曲线积分∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ)计算沿
设L是平面上从圆周x2+y2=a2上一点到圆周x2+y2=b2上一点的一条光滑曲线(a>0,b>0),r=则I=∫Lr3(xdx+ydy)=___________.
空间中两条直线l1:共面的充分必要条件是
设A是n阶矩阵,则|(2A)*|=
设函数u(x,y)有连续二阶偏导数,满足=0,又满足下列条件:u(x,2x)=x,u′x(x,2x)=x2(即u′x(x,y)|y=2x=x2),求u″xx(x,2x),u″xy(x,2x),u″yy(x,2x).
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
设A是n阶实对称矩阵,AB+BTA是正定矩阵,证明A可逆.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
计算曲面积分x2zcosγdS,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
随机试题
阅读《雨巷》中的一段诗句,回答问题。她是有丁香一样的颜色,丁香一样的芬芳,丁香一样的忧愁,在雨中哀怨,哀怨又彷徨;撑着油纸伞,独自彷徨在悠长,悠长又寂寥的雨
脑出血发病的主要原因是()。
小儿惊风的特征性证候为
DiGeoge综合征的病因是
肾损伤下列哪种情况可能有血尿?()
对建设工程风险的识别来说,风险识别的结果是()。
贷款分类除了帮助识别贷款的外在风险以外,还有助于发现信贷管理、内部控制和信用文化中存在的问题,从而有利于银行改善信贷管理水平。()
某公司2006年年初存货成本为15万元,年初全部资产总额为140万元,年初资产负债率40%。2006年有关财务指标为:流动比率2.1,速动比率1.1,存货周转率6次,资产负债率35%,长期负债42万元,全部资产总额160万元,没有待摊费用。2006年获得
根据我国《宪法》和法律的规定,()可以向全国人民代表大会提出法律案,由主席团决定是否列入会议议程,或由主席团先交专门委员会讨论后,然后主席团根据专门委员会的建议,再决定是否列入大会议程。
Inthispassagetheword"associate"means______.Thebesttitleforthispassageshouldbe"______".
最新回复
(
0
)