首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P—1AP=α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
已知P—1AP=α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
admin
2017-12-29
28
问题
已知P
—1
AP=
α
1
是矩阵A属于特征值λ=1的特征向量,α
2
与α
3
是矩阵A属于特征值A=5的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,—α
2
,α
3
)
B、(α
1
,α
2
+α
3
,α
2
一2α
3
)
C、(α
1
,α
3
,α
2
)
D、(α
1
+α
2
,α
1
一α
2
,α
3
)
答案
D
解析
若P
—1
AP=Λ=
,P=(α
1
,α
2
,α
3
),则有AP=PΛ,即
(Aα
1
,Aα
2
,Aα
3
)=(λ
1
α
1
,λ
2
α
2
,λ
3
α
3
),
可见α
i
是矩阵A属于特征值λ
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关。
若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故选项A正确。
若α,β是属于特征值λ的特征向量,则α与β的线性组合仍是属于特征值λ的特征向量。本题中,α
2
,α
3
是属于λ=5的线性无关的特征向量,故α
2
+α
3
,α
2
—2α
3
仍是λ=5的特征向量,并且α
2
+α
3
,α
2
—2α
3
线性无关,故选项B正确。
对于选项C,因为α
2
,α
3
均是λ=5的特征向量,所以α
2
与α
3
谁在前谁在后均正确。故选项C正确。
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
—α
2
不再是矩阵A的特征向量,故选项D错误。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/GUX4777K
0
考研数学三
相关试题推荐
函数F(x)=∫1x(1-)dt(x>0)的递减区间为________.
设f’(ex)=1+x,则f(x)=________.
设f(x)连续,f(0)=1,f’(0)=2,下列曲线与曲线y=f(x)必有公共切线的是()
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
已知,2阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a—t)dt。证明:F(ga)-2F(A)=f2(A)-f(0)f(2a).
求级数的和函数.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
随机试题
红花的功效是
简述《海牙规则》存在的主要问题。
急性心肌梗死24h内主要死亡原因为()。
女性,55岁,国家公务员,30年来因丈夫(高级工程师)有外遇,夫妻感情不佳,总想离婚,但又总舍不得孩子,又怕丢面子,来到心理咨询门诊,想问心理咨询师,离婚还是不离婚好?此时心理咨询师最应注意的原则是()
施工现场临时用电设备在5台以下和设备总容量在50kW以下者,应编制()。
2013年2月,甲公司需购置一台环保设备,预计价款为6000万元,因资金不足,按相关规定向有关部门提出补助2160万元的申请。2013年3月1日,政府相关部门批准了甲公司的申请并拨付甲公司2160万元财政拨款(同日到账)。2013年4月1日,甲公司购入环
公安机关及其人民警察的行为宗旨是()。
美国前总统林肯说:“最高明的骗子,可能在某个时刻欺骗所有的人,也可能在所有的时刻欺骗某些人,但不可能在所有时刻欺骗所有的人。”如果林肯的上述断定是真的,那么下述哪项断定是假的?
当用户在一个关系表的某一列上建立一个非聚集索引(该表没有聚集索引)时,数据库管理系统会自动为该索引维护一个索引结构。该索引结构中的记录是由【2】和它相对应的指针构成的。
Wehavealldonesomethinginourlivesthatweareashamedof.Someofushavefallenforthewrongman,somehavemissedther
最新回复
(
0
)