首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
admin
2018-07-23
58
问题
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫
0
x
f(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
选项
A、恒为正.
B、恒为负.
C、与x同号.
D、与x异号.
答案
C
解析
令x-t=u,作积分变量代换,得
f(x)=∫
x
0
sin(x-u)d(-u)+x=∫
0
x
f(u) sin(x-u)d(-u)+x
=sinx∫
0
x
f(u)cosudu-cosx∫
0
x
f(u)sinudu+x,
fˊ(x)=cosx∫
0
x
f(u)cosudu+sinx·cosx·f(x)+sinx∫
0
x
f(u)sinudu-cosx·sinx·f(x)+1
= cosx∫
0
x
f(u)cosudu+sinx∫
0
x
f(u)sinudu+1,
f″(x)=-sinx∫
0
x
f(u)cosudu+cos
2
·f(x)+ cosx∫
0
x
f(u)sinudu+sin
2
·f(x)
=f(x)-f(x)+x,
所以
.又因f(0)=0,fˊ(0)=1,所以C
1
=1,所以C
2
=0.从而
[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Goj4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 D
设B是2阶矩阵,且满足AB=B,k1,k2是任意常数,则B=
若矩阵A=相似于对角矩阵A,试确定常数n的值,并求可逆矩阵P使P-1AP=A.
当x→1时,函数的极限().
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设奇函数f(x)在闭区间[-1,1]上具有2阶导数,且f(1)=1.证明(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3证明α1,α2,α3线性无关;
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
证明:区间(a,b)内单调函数f(x)若有间断点,则它必为第一类间断点.
随机试题
Undergraduatestudents______therarebooksintheschoollibrary.
孕妇子宫肌瘤的MRI表现,下列不正确的是
男性,38岁,因吞咽困难,严重消瘦到医院就诊,食管吞钡检查示食管下段呈鸟嘴样改变。在该患者病程中曾出现发热、咳嗽、脓痰,X线摄片发现右下肺叶片状阴影,经抗感染治疗后上述症状缓解,应考虑患者有过
完整的内分泌病诊断包括
A.甲状腺素B.丙硫氧嘧啶C.血管神经性水肿D.粒细胞下降E.甲状腺功能亢进症黏液性水肿应选用哪种药物()
我国社会总储蓄率高达()左右,全社会投资资金的()来源于国内储蓄。
工程建设标准批准部门应当对工程项目执行强制性标准情况进行监督检查。监督检查可以采取()的方式。
某企业因与银行发生票据兑付纠纷而提起诉讼,该企业在起诉银行时可以选择的人民法院有()。
これはチョクレートという( )です。
Sheis______(父亲的掌上明珠)buthermotherisstrictwithher.
最新回复
(
0
)