首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2022-04-07
65
问题
设A=
求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠1/2时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-a]X=0得ξ
1
=[*] λ
2
=a时,由(aE-A)X=0得ξ
2
=[*] λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] 令P=[*] (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=1/2时,λ
1
=λ
3
=1/2, 因为r(1/2E-A)=2,所以方程组(1/2E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/H1R4777K
0
考研数学三
相关试题推荐
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b—a1+a2+a3+a4,求方程组Ax=b的通解。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
随机试题
患者男性,70岁,因病态窦房结综合征植入DDD起搏器。现因心慌就诊,心电图如图4—8—18所示。该心电图应诊断为
下列哪一项叙述是错误的
房地产信息具有()的特征。
目前,我国银行的个人通知存款提供的品种有()。
“甜蜜的嗓音”指的是下列哪一种感觉现象?()
【2015河南新乡】我国教师法规定,各级人民政府应当采取措施,加强教师的(),改善教师的工作条件和生活条件。
当前我国积极倡导绿色生活方式,鼓励消费者购买和使用节约环保产品,节能省地住宅,减少使用一次性用品,下列不属于绿色生活方式的是:
以下关于中国政党制度的表述不正确的是()。
请从所给的四个选项中,选出最恰当的一项填入问号处,使之呈现一定的规律:
WhyDrugTestingIsNeededA)TheillicitdrugtradeinAmericahasfastbecomea$110billionannualbusiness.Accordingtothe
最新回复
(
0
)