首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,试证: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在常数μ,使得Ak=μk一1A.
设n阶矩阵A的秩为1,试证: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在常数μ,使得Ak=μk一1A.
admin
2019-04-22
56
问题
设n阶矩阵A的秩为1,试证:
(1)A可以表示成n×1矩阵和1×n矩阵的乘积;
(2)存在常数μ,使得A
k
=μ
k一1
A.
选项
答案
(1)将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组有一个非零向量组成,设为α
i
=[α
1
,α
2
,…,α
n
]
T
(≠0),其余列向量均可由α
i
线性表出,设为α
j
=b
j
α
i
(j=1,2,…,n,j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
1
,b
2
α
2
,…,b
n
α
s
]=α
i
[b
1
,b
2
,…,b
s
]=[*][b
1
,b
2
,…,b
s
]。 (2)记α=α
i
=[a
1
,a
2
,…,a
s
]
T
,β=[b
1
,b
2
,…,b
s
]
T
,则 A=αβ
T
,A
k
=(αβ
T
)
k
=(αβ
T
)(αβ
T
)…(αβ
T
)=α(β
T
α)(β
T
α)…(β
T
α)β
T
. 记β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=μ,则 A
k
=αμ
k一1
β
T
=μ
k一1
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/H3V4777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设f(x)具有二阶连续导数,且,则()
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设α1,α2……αs均为n维向量,下列结论中不正确的是()
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
求极限
设f(x)连续,且f(1)=0,f’(1)=2,求极限
已知三阶行列式=__________。
随机试题
A.湿法制粒压片法B.干法制粒压片法C.半干式颗粒压片法D.粉末直接压片法E.结晶直接压片法将药物和辅料的粉末混合均匀、压缩成大片状或板状后,粉碎成所需大小颗粒后压片。该方法是
下列选项中,只有实质细胞而没有间质的恶性肿瘤是
充分发挥工程价格作用的主要障碍是()。
乙公司于2011年末购入一台设备并投入企业管理部门使用,入账价值为463500元,预计使用年限为5年,预计净残值为13500元.自2012年1月1日起按年限平均法计提折旧。2013年初,由于技术进步等原因,公司将该设备的折旧方法改为年数总和法,预计剩
企业对于其拥有或控制的无形资产,均应当在每期期末对其进行减值测试。()
根据下列资料。回答下列问题。2015年2月,我国快递业务量完成8.2亿件,同比增长18.7%;业务收入完成136.0亿元,同比增长22.5%。消费者对快递业务进行的申诉中,有效申诉(确定企业责任的)占总申诉量的97.6%,为消费者挽回经济损失229.8万
1913,1616,1319,1022,()
我国公安机关工作的宗旨的具体体现是全心全意为人民服务。()
下图是Posner(1990)的一个经典实验的结果,纵坐标为反应时(毫秒),横坐标为字母间隔(秒),请读图并说明:字母间隔(秒)反应时间是字母间隔的函数该研究结果证明或修正了什么理论?
Decidewhichofthechoicesgivenbelowwouldbestcompletethepassageifinsertedinthecorrespondingblanks.Itisallv
最新回复
(
0
)