(Ⅰ)证明:当x>0时,2ex>x2+2x+2; (Ⅱ)设方程在(0,+∞)内有解,求a的取值范围.

admin2021-03-10  34

问题 (Ⅰ)证明:当x>0时,2ex>x2+2x+2;
(Ⅱ)设方程在(0,+∞)内有解,求a的取值范围.

选项

答案(Ⅰ)令[*](x)=2ex-x2-2x-2,[*](0)=0, [*](x)=2ex-2x-2,[*](0)=0, [*](x)=2(ex-1)>0(x>0), 由[*]得[*](x)>0(x>0), 由[*]得[*](x)>0(x>0). 故2ex>x2+2x+2. (Ⅱ)令 [*] 显然x2(ex-1)2>0(x>0), 今h(x)=x2ex-(ex-1)2,h(0)=0, h’(x)=2xex+x2ex-2(ex-1)ex=ex(x2+2x-2ex+2)<0(x>0), 由[*]得h(x)<0(x>0), 故f’(x)<0(x>0),即f(x)在(0,+∞)内单调递减, 再由[*]得a的取值范围为[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/H784777K
0

最新回复(0)