首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0, 证明:对任意常数λ,存在ξ∈(0,1),使得.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0, 证明:对任意常数λ,存在ξ∈(0,1),使得.
admin
2020-10-30
66
问题
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)
<0,
证明:对任意常数λ,存在ξ∈(0,1),使得
.
选项
答案
因为f(0)f(1)>0,不妨假设f(0)>0,f(1)>0,又f(0)[*],所以[*]. f(x)在[*]上连续,[*],由零点定理,存在ξ
1
∈[*],使得f(ξ
1
)=0.f(x)在[*]上连续,[*],由零点定理,存在ξ
2
∈[*],使得f(ξ
2
)=0.令F(x)=f(x)e
-λx
,F’(x)=[f’(x)-λf(x)]e
λx
,F(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,F(ξ
1
)=F(ξ
1
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
1
)[*](0,1),使得F’(ξ)=[f’(ξ)-λf(ξ)]e
-λξ
=0,所以f’(ξ)-λf(ξ)=0,即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HDx4777K
0
考研数学三
相关试题推荐
将10双不同的鞋随意分成10堆,每堆2只,以X表示10堆中恰好配成一双鞋的堆数,则E(X)=________。
微分方程的通解为______.
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A,B为同阶可逆矩阵,则().
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设常数k>0,则级数
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
求微分方程xy’+y=xex满足y(1)=1的特解.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,,若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
副交感神经兴奋的表现是
某患者血小板5.0×109/L,出血时间5分钟,红细胞计数4.0×1012/L,白细胞计数5.0×109/L,网织红细胞1%。应考虑()。
西妥昔单抗用于头颈部肿瘤治疗,错误的是
A.主诉B.现病史C.既往史D.个人生活史E.家族史
下列五输穴,不属于本经母穴的是
履约保证金不得超过中标合同金额的()。
位于县城的某筷子生产企业系增值税一般纳税人,2011年4月份发生以下业务:(1)委托某商场代销红木工艺筷子5000套,双方约定。待5000套全部售出并取得代销清单后。企业再开具增值税专用发票给商场。本月底尚未收到代销清单。但已收到其中的3000套的不含税
银行业从业人员在处理客户投诉时,应当做到()。
下列说法不正确的是()。
Howdoesthemanseemtofeelaboutdrivingfromhishometohiswork?
最新回复
(
0
)