首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0, 证明:对任意常数λ,存在ξ∈(0,1),使得.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0, 证明:对任意常数λ,存在ξ∈(0,1),使得.
admin
2020-10-30
64
问题
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)
<0,
证明:对任意常数λ,存在ξ∈(0,1),使得
.
选项
答案
因为f(0)f(1)>0,不妨假设f(0)>0,f(1)>0,又f(0)[*],所以[*]. f(x)在[*]上连续,[*],由零点定理,存在ξ
1
∈[*],使得f(ξ
1
)=0.f(x)在[*]上连续,[*],由零点定理,存在ξ
2
∈[*],使得f(ξ
2
)=0.令F(x)=f(x)e
-λx
,F’(x)=[f’(x)-λf(x)]e
λx
,F(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,F(ξ
1
)=F(ξ
1
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
1
)[*](0,1),使得F’(ξ)=[f’(ξ)-λf(ξ)]e
-λξ
=0,所以f’(ξ)-λf(ξ)=0,即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HDx4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
(03年)设F(χ)=f(χ)g(χ),其中函数f(χ),g(χ)在(-∞,+∞)内满足以下条件:f′(χ)=g(χ),g′(χ)=f(χ),且f(0)=0,f(χ)+g(χ)=2eχ.(1)求F(χ)所满足的一阶方程;(2)
(96年)设某种商品的单价为p时,售出的商品数量Q可以表示成Q=-c.其中a、b、c均为正数,且a>bc.(1)求P在何范围变化时,使相应销售额增加或减少;(2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
[2013年]设函数f(x)在[0,+∞)上可导,f(0)=0,且证明:对上题中的a,存在ξ∈(0,a),使得
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
[2006年]设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分.若△x>0,则().
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则()
设D是Oxy平面上以A(1,1),B(-1,1)和C(-1,-1)为顶点的三角形区域,则
把当x→0+时的无穷小量α=tanx一x,β=∫0x(1一cos一1排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
随机试题
A.麻醉药品B.一类精神药品C.二类精神药品D.处方药E.非处方药专用处方保存三年备查的药品是
(2010年)百年一遇的洪水,是指()。
协调处理现场周围的保护工作是( )的义务。
计算单位工程的工程量应按( )计算。
秦先生目前在某咨询公司任项目经理,月薪税前1.5万人民币,按15%缴纳三险一金,年底约有税前15万元的奖金收入。秦太太是幼儿园教师,工作稳定,每月收入税后3500元。二人目前均为32岁,2005年结婚,2005年6月首付15万元,采用等额本息方式贷款购买了
导游人员在对儿童的接待中,下列说法正确的是()
包装策略主要包括()
税收是国家普遍采用的取得财政收人的形式,它与其他财政收入形式相比,具有()等形式特征。
Hisdogwas______byatrucklastnightanddiedimmediately.
Internetpiracyisdefinedas______.SalesofpiratedsoftwareovertheInternethasbeenencouragedbyallofthefollowingEX
最新回复
(
0
)