首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 当a取下列哪个值时,函数f(x)=2x3-9x2+12x一a恰好有两个不同的零点?( )
[2005年] 当a取下列哪个值时,函数f(x)=2x3-9x2+12x一a恰好有两个不同的零点?( )
admin
2019-03-30
78
问题
[2005年] 当a取下列哪个值时,函数f(x)=2x
3
-9x
2
+12x一a恰好有两个不同的零点?( )
选项
A、2
B、4
C、6
D、8
答案
B
解析
解一 仅(B)入选.利用命题1.2.3.8求之.为此先求出可能的极值点,证明f(x)恰好有一个极值等于0.事实上,由
f’(x)=6x
2
-18x+12=6(x-1)(x-2)
知,可能的极值点为x
1
=1,x
2
=2,而f(1)=5-a,f(2)=4-a.又
f"(x)=12x-18, f"(1)=-6<0, f"(2)=6>0.
因而x=1是f(x)的极大值点,x=2为f(x)的极小值点.极大值、极小值分别为f(1)=5-a,f(2)=4-a.由命题1.2.3.8知,当两个极值有一个为零时,函数方程f(x)=2x
3
-9x
2
+12x-a=0恰有两个不同的实根.可见,当a=4(或a=5)时,函数f(x)恰有两个不同的实根.
解二 当a=4时,f(1)=1,f(2)=0,即x=2为f(x)的一个零点.由f’(x)=6(x-1)(x-2)知,当-∞<x<1时,f’(x)>0,f(x)单调增加,而f(1)=1>0,
故f(x)在(-∞,1)内有唯一零点.当1<x<2时,f’(x)<0,f(x)单调减少,又f(2)=0,则当l<x<2时,f(x)>0,此区间内无零点.当x>2时,f’(x)>0,f(2)=0,故f(x)>0,即在此区间内无零点.仅(B)入选.
解三 由解一知,f(1)=5-a,f(2)=4-a分别为f(x)的极大值M和极小值m.当a=4时,M=f(1)=1>0,而当a=5时,m=f’(2)=4-5=-1<0.由命题1.2.3.7(3)知,f(x)只有两个实根.仅(B)入选.
注:命题1.2.3.7(3)当m<0(或M>0)时,在[a,b]上f(x)与x轴只有两个交点,即f(x)=0在[a,b]上只有两个实根.
命题1.2.3.8 对于三次多项式函数f(x)=ax
3
+bx
2
+cx+d,当两个极值同号时,函数方程f(x)=0只有一个实根,当两个极值异号时,函数方程f(x)=0有三个实根;当两个极值有一个为零时,函数方程f(x)=0只有两个不同的实根.
转载请注明原文地址:https://kaotiyun.com/show/2aP4777K
0
考研数学三
相关试题推荐
求函数f(x)=sinx的间断点,并指出类型。
设函数f(x)==________。
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
设函数f(x)在x=a的某邻域内有定义,且则在x=a处()
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
设连续函数f(x)满足f(x)=,则f(x)=______.
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y’’-6y’+9y=e3x,则y(x)=______.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
(2004年)函数在下列哪个区间内有界?()
随机试题
实践是检验真理的唯一标准,这主要是因为()
将多台计算机连成网络后,不能实现()
以下对睾丸肿瘤的描述,错误的是
咳大量脓痰静置后分3层的疾病是
男,50岁。1周前心前区剧烈疼痛,随后心悸、气促,怀疑急性心肌梗死。起病4周后,病人反复低热,左肺底部有湿性啰区闻及心包摩擦音,此时应考虑并发
需采用“急则治其标”治则的病变有()。
公共建筑的无障碍电梯,以下哪一条设计要求不确切?
不能作为调节混凝土凝结时间、硬化性能的外加剂的是()
进出口许可证一经签发不得擅自更改证面内容。( )
简述基本的公司治理原则?
最新回复
(
0
)