首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
admin
2018-11-11
86
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n).
二次型f(x
1
,x
2
,…,x
n
)=
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
一1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)f(X)=(x
1
, x
2
,…,x
n
)[*] 因秩(A)=n,故A可逆,且A
一1
=[*]A
*
,从而(A
一1
)
T
=(A
T
)
一1
=A
一1
,故A
一1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
一1
)
T
AA
一1
= (A
T
)
一1
E=A
一1
,所以A与A
一1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/HJj4777K
0
考研数学二
相关试题推荐
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)<n一1时,r(A*)=0.
设A为n阶可逆矩阵,A*是A的伴随矩阵.证明(1)|A*|=|A|n-1;(2)(A*)T=(AT)*;(3)(A*)-1=(A-1)*;(4)(A*)*=|A|n-2A;(5)(kA)
设A为n阶可逆对称矩阵,B为n阶对称矩阵.若E+AB可逆,则(层+AB)一1是对称矩阵.
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加到第2列得C,记则C=()
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2.且行列式的值为1,求m,k.
设f(x)在[a,b]上可微,∈[a,b],a<f(x)<b,且f’(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
设总体X服从正态分布N(μ,σ2),S2为样本方差,证明S2是σ2的一致估计量.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
∫arcsinxarccosxdx.
设P(x)在[0,+∞)连续且为负值,y=y(x)在[0,+∞)连续,在(0,+∞)满足y’+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.
随机试题
阅读《风波》中的片段,回答下列小题:临河的土场上,太阳渐渐地收了他通黄的光线了。场边靠河的乌桕树叶,干巴巴的才喘过气来,几个花脚蚊子在下面哼着飞舞。面河的农家的烟突里,逐渐减少了炊烟,女人孩子们都在自己门口的土场上泼些水,放下小桌子和矮凳;人知道,这已经
A.儿童B.老年患者C.妊娠期妇女D.哺乳期妇女E.更年期后的女性应用糖皮质激素易发生高血压的人群是()。
寒热往来,发无定时,可见于()。
根据《建设工程项目管理规范》,制定项目管理目标责任书的主要依据有()。
下列关于劳动仲裁的表述中,正确的有()。
大陆对台大政方针是坚持反对“台独”,坚持维护一个中国的原则,继续坚持()。
简述技能的概念、特点、类型以及作用。
甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和Y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
UML中的结构事物是模型中的静态部分,采用名词描述概念或物理元素。(46)________________属于结构事物,以此事物为主的UML模型图为(47)________________。
WhatdoestheManMean?
最新回复
(
0
)