首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
admin
2018-11-11
65
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n).
二次型f(x
1
,x
2
,…,x
n
)=
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
一1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)f(X)=(x
1
, x
2
,…,x
n
)[*] 因秩(A)=n,故A可逆,且A
一1
=[*]A
*
,从而(A
一1
)
T
=(A
T
)
一1
=A
一1
,故A
一1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
一1
)
T
AA
一1
= (A
T
)
一1
E=A
一1
,所以A与A
一1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/HJj4777K
0
考研数学二
相关试题推荐
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T.求方程组(I)的一个基础解系;
设向量β可由向量组α1,α2……αm线性表示,但不能由向量组(I):α1,α2……αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则()
设A为n阶可逆对称矩阵,B为n阶对称矩阵.若E+AB可逆,则(层+AB)一1是对称矩阵.
设f(x)具有二阶连续导数,且f(0)=1,f(2)=3,f’(2)=5,求∫01xf”(2x)dx.
设H(x)=∫0xf(t)g(x一t)dt,其中g(x)=f(x)=x,求H(x).
计算下列定积分:(1)∫-32min{2,x2}dx;(2)∫-1a|x|dx.
设
对数螺线r=eθ在(r,θ)=处的切线的直角坐标方程.
已知二维随机变量(X,Y)的联合概率分布为分别按下列已知条件,求α,β(1)如果P{x+y=1}=0.4;(2)如果X与Y不相关;系数ρxy=0;(3)已知事件{X=0}与{Y=1}相互独立;(4)设F(x,y)为(X,Y)
计算积分
随机试题
若干年前鲑鱼无法在这条污染严重的缺氧河中生存,许多其他种类生物同样无法生存。而如今,经过这些年的人工治理,鲑鱼已经重现。这是该条河不再受污染的可靠指标。下列各项都表明上述推理中可能存在缺陷。除了:
中共十一届三中全会的主要功绩有()
设线性方程组问a,b分别为何值时,方程组无解,方程组有唯一解,方程组有无穷多解?
各类声环境功能区夜间突发的噪声,其最大值不准超过标准值()dB。
公司成本管理工作的主要内容包括()。
总体战略制定完成后,应该制定战略措施,从而保证战略落地。对新产品的开发、老产品的技术改进、生产规模的技术改造等属于()。
导游人员必须参加所在地旅游行政管理部门举办的年审培训。()
我国宪法规定,公民有受教育的()。
Tounderstandhowastrologyworks,weshouldfirsttakeaquicklookatthesky.Althoughthestarsareatenormousdistances,t
QQ是目前在中国使用很广的一种即时通讯工具,它基于因特网,可以方便人们随时随地进行在线交流。QQ由腾讯(Tencent)公司开发,其标志(logo)为可爱的小企鹅图像。QQ可以支持在线聊天、视频电话、文件传输、音乐、游戏、邮箱等多种功能。现在QQ已经成为世
最新回复
(
0
)