首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n). 二次型f(x1,x2,…,xn)= (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
admin
2018-11-11
101
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n).
二次型f(x
1
,x
2
,…,x
n
)=
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
一1
;
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)f(X)=(x
1
, x
2
,…,x
n
)[*] 因秩(A)=n,故A可逆,且A
一1
=[*]A
*
,从而(A
一1
)
T
=(A
T
)
一1
=A
一1
,故A
一1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
一1
)
T
AA
一1
= (A
T
)
一1
E=A
一1
,所以A与A
一1
合同,于是g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/HJj4777K
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
求直线绕z轴旋转而成的旋转曲面方程,并问a、b不同时为零时,该曲面为何种曲面?
已知矩阵A与B相似,其中求正交矩阵Q,使得Q一1AQ=B.
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
求下列可降阶的高阶微分方程的通解.(1)x2y”=(y’)2+2xy’;(2)(1+x)y”+y’=ln(x+1);(3)1+yy”+(y’)2=0;(4)y”=1+(y’)2.
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
设∫xf(x)dx=arcsinx+C,则=_______
过点(1/2,0)且满足关系式y’arcsinx+=1的曲线方程为_______。
随机试题
根据《刑法》的规定,下列可以适用死刑的情形是()。
患者女,56岁。因肉眼血尿就诊,行肾脏彩超及CT发现右肾实质性占位,大小约3cm,左肾结石,轻度肾盂积水。该患者适合的手术方式是
患者男,30岁。1年前下岗。近5个月来觉得邻居都在议论他,常不怀好意地盯着他,有时对着窗外大骂,自语、自笑,整天闭门,拨打110电话要求保护。该病例最可能的诊断是
发行人发行人民币债券所筹集的资金,可换成外汇转移至境外。( )
在公司稳定增长阶段,适宜采用低正常股利加额外股利政策。()
某些特色突出或极具个性化的饭店,若自身条件与星级评定标准规定的条件有所区别,则()。
黄某经营一店铺,由于经营不善,欠他人债务6000元。黄某在临死之前立自书遗嘱,将自己的全部财产4000元均等地分给了独子和一个老朋友,二人均表示接受。那么,关于黄某6000元债务的清偿,表述正确的是()。
材料一材料二1935年10月,中共中央率领中国工农红军第一方面军长征到达陕北后,陕甘苏区得到巩固与发展。1937年3月,中国共产党为团结抗日,经与国民党政府多次谈判,将陕甘苏区改为陕甘宁特区,5月改称陕甘宁边区,9月6日成立边区政府,林伯渠
实施可持续发展战略,必须坚持()协调统一发展的原则。
PassageThreeWhyarethecontrolsofamoderncarcriticized?
最新回复
(
0
)