首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
admin
2021-02-25
31
问题
设b
1
=a
1
+a
2
,b
2
=a
2
+a
3
,b
3
=a
3
+a
4
,b
4
=a
4
+a
1
,证明向量组b
1
,b
2
,b
3
,b
4
线性相关.
选项
答案
要证b
1
,b
2
,b
3
,b
4
线性相关,只需证存在不全为零的数x
1
,x
2
,x
3
,x
4
, x
1
b
1
+x
2
b
2
+x
3
b
3
+x
4
b
4
=0. 即x
1
(a
1
+a
2
)+x
2
(a
2
+a
3
)+x
3
(a
3
+a
4
)+x
4
(a
4
+a
1
)=0. 整理得(x
1
+x
4
)a
1
+(x
1
+x
2
)a
2
+(x
2
+x
3
)a
3
+(x
3
+x
4
)a
4
=0. 令上式左端系数为零,可得齐次线性方程组[*]它的系数行列式D=[*]=0,从而可得方程组有非零解,即有不全为零的数x
1
,x
2
,x
3
,x
4
使x
1
b
1
+x
2
b
2
+x
3
b
3
+x
4
b
4
=0,所以b
1
,b
2
,b
3
,b
4
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HK84777K
0
考研数学二
相关试题推荐
(2012年试题,三)已知函数若x→0时f(x)一a与xk是同阶无穷小,求常数k的值.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
计算二重积分,其中D={(r,θ)|0≤r≤secθ,}.
[2010年]设,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
已知曲线L的方程(1)讨论L的凹凸性;(2)过点(=1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求A的特征值与特征向量;
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求矩阵A.
随机试题
为什么说德育过程是培养学生知、情、意、行的过程?德育工作具有多种开端是何道理?
根据《物权法》规定,登记机构不得有()行为。
有限责任公司注册资本的最低限额为人民币()万元。
《水土保持法》规定,在崩塌滑坡危险区和泥石流易发区禁止()。
A城是一个行业分工明确、工商户较为集中的中型城市,一般而言,最为适合A城的税收征收管理的形式是()。
羽扇纶巾,谈笑间,________________。(苏轼《念奴娇.赤壁怀古》)
桀犬吠尧:《史记》( )
根据侵权责任法规定,侵权人造成被侵权人残疾的,侵权人应当进行人身损害赔偿的范围包括()。
Untiltheverylatestmomentofhisexistence,manhasbeenBoundtotheplanetonwhichheoriginatedanddeveloped.Nowheha
Inasense,thenewprotectionismisnotprotectionismatall,atleastnotinthe【C1】______senseoftheterm.Theoldprotectio
最新回复
(
0
)