首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,其特征值为λ1=-2,λ2=λ3=1,其对应的线性无关的特征向量为α1,α2·α3,令P=(4α1,α2-α3,α2+2α3),则P-1(A*+3E)P为________.
设A为三阶矩阵,其特征值为λ1=-2,λ2=λ3=1,其对应的线性无关的特征向量为α1,α2·α3,令P=(4α1,α2-α3,α2+2α3),则P-1(A*+3E)P为________.
admin
2020-12-10
30
问题
设A为三阶矩阵,其特征值为λ
1
=-2,λ
2
=λ
3
=1,其对应的线性无关的特征向量为α
1
,α
2
·α
3
,令P=(4α
1
,α
2
-α
3
,α
2
+2α
3
),则P
-1
(A
*
+3E)P为________.
选项
答案
[*]
解析
因为A的特征值为λ
1
=-2,λ
2
=λ
3
=1,所以A
*
的特征值为μ
1
=1,μ
2
=μ
3
=-2,A
*
+3E的特征值为4,1,1,又因为4α
1
,α
2
-α
3
,α
2
+2α
3
也为A的线性无关的特征向量,所以4α
1
,α
2
-α
3
,α
2
+2α
3
也是A
*
+3E的线性无关的特征向量,所以
转载请注明原文地址:https://kaotiyun.com/show/HP84777K
0
考研数学二
相关试题推荐
解微分方程y2dx一(y2+2xy—x)dy=0.
A、 B、 C、 D、 B
二元函数f(x,y)在点(x0,y0)处的下面4条性质:(Ⅰ)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
设n阶矩阵A=(a1,a2,…an),B=(β1,β2,…βn),AB=(r1,r2,…rn),令向量组(I):a1,a2,…an;(II):β1,β2,…βn;(III):r1,r2,…rn,若向量组(III)线性相关,则().
A、 B、 C、 D、 A
设动点P(χ,y)在曲线9y=4χ2上运动,且坐标轴的单位长是1cm.如果P点横坐标的速率是30cm/s,则当P点经过点(3,4)时,从原点到P点间距离r的变化率是_______.
设则
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex。求f(x)的表达式;
设f(x)在[1,+∞)内可导,f’(x)0,令an=∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
设y(x)是初值问题的解,则∫0+∞xy’(x)dx﹦()
随机试题
五加皮、桑寄生功效的共同点是
下述体位,适合心脏摄影的是
目前普通商品住房的最低资本金比例为20%。()
实物法和预算单价法相比,工作内容的不同主要体现在()阶段。
根据《土地增值税暂行条例》规定,土地增值税的扣除项目包括()。
“舌尖现象”可以用来证明()。
_______,_______。寡助之至,亲戚畔之;多助之至,天下顺之。
结合材料回答问题:材料1当细菌发生变异,抗生素对需要用抗生素治疗感染的人不再有效,就是抗生素耐药。世卫组织官员称,如果没有多方紧急协调行动,“世界就会迈向后抗生素时代,多年来可治疗的常见感染和轻微伤痛可再一次置人于死地。“这不是预测,而可能是即
A、 B、 C、 A
RealpolicemenhardlyrecognizeanyresemblancebetweentheirlivesandwhattheyseeonTV—iftheyevergethomeintime.There
最新回复
(
0
)