首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=[1,一1,1]T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
[2007年] 设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=[1,一1,1]T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
admin
2019-06-09
78
问题
[2007年] 设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=[1,一1,1]
T
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(I)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
选项
答案
由A为实对称矩阵推出B也为实对称矩阵,所给特征向量不完整,需用实对称矩阵的性质求出A的所有特征向量.再利用相似对角化,求出矩阵B. (Ⅰ)令f(x)=x
5
一4x
3
+1,则B=f(A)=A
5
一4A
3
+E.因A的特征值为λ
1
=1, λ
2
=2,λ
3
=一2,故B=f(A)的三个特征值分别为 μ
1
=f(λ
1
)=f(1)=一2,μ
2
=f(λ
2
)=f(2)=l,μ
3
=f(λ
3
)=f(一2)=1. 由Aα
1
=λ
1
α
1
=α
1
,得到 A
2
5
1
=A
4
Aα
1
=A
4
α
1
=…=Aα
1
=α
1
,A
3
α
1
=A
2
Aα
1
=A
2
α
1
=AAα
1
=Aα
1
=α
1
, 故 βα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=α
1
-4α
1
+α
1
=一2α
1
, 即B的属于特征值μ
1
=f(λ
1
)=f(1)=一2的一个特征向量为α
1
(与A的属于特征值λ
1
=1,的特征向量α
1
相同)。所以B的属于特征值μ
1
=一2的全部特征向量为k
1
α
1
,其中k
1
为非零的常数. 一般有矩阵A的属于特征值λ
i
的特征向量与矩阵B=f(A)的属于特征值f(λ
i
)的特征向量相同,故为求B的特征向量只需求出A的特征向量. 设A的属于A的特征向量为α
2
=[x
1
,x
2
,x
3
]
T
,则因λ
1
≠λ
2
,故α
2
与α
1
正交.于是有 α
1
T
α
2
=[1,一1,1][*]=x
1
一x
2
+x
3
=0. 由2E—A=[*]即得A的属于特征值λ
2
=2的特征向量为 α
2
=[1,1,0]
T
,α
3
=[一1,0,1]
T
. 故B的属于特征值μ
2
=f(λ
2
)=f(2)=1的线性无关的特征向量为α
2
=[1,l,0]
T
,α
3
=[-1.0.0]
T
. 所以B的属于二特征值λ
2
=l的全部特征向量为k
2
α
2
+k
3
α
3
其中k
2
,k
3
足不全为零的常数. (II)解 令P=[α
1
,α
2
,α
3
]=[*].则P
-1
BP=diag(-2,1,1).于是 B=Pdiag(一2,1,1)P
-1
=[*] =[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HeV4777K
0
考研数学二
相关试题推荐
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
设A=,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。当F(x)的最小值为f(a)一a2一1时,求函数f(x)。
f(x)=g(x)为奇函数且在x=0处可导,则f’(0)=__________。
设f(x,y)连续,且f(x,y)=xy+f(μ,ν)dμdν,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
已知函数f(x)=。求a的值;
计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
随机试题
感染性疾病包括_________和_________。
患者无痛性血尿,超声示膀胱三角区乳头状隆起性病灶3cm×2cm,基底部较宽,不随体位移动,首选诊断是
男性,30岁,高处坠落造成腰椎骨折致截瘫1年。因长期卧床而发生骶尾部及大腿压疮。查体:精神较差,消瘦,贫血貌。骶尾部溃疡创面呈椭圆形,面积9cm×6cm大小,溃烂状,基底为肉芽组织创面,渗出物较多;骶骨部分骨质外露,创周皮肤发暗变硬;左大腿股骨大转子处有一
患者,女,36岁。肾绞痛突然发作,尿液检查可见镜下血尿。应首先考虑的诊断是
商业银行的中间业务包括()。
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
在基于体系结构的软件设计方法中,采用①来描述软件架构,采用②来描述功能需求,采用③来描述质量需求。②处应填入?
Electricityplaysanessentialpartinourlife.Noonecandenythatelectriclightisnecessaryforpeople’slife.However,ca
CarmenAraceMiddleSchoolissituatedinthepastoraltownofBloomfield,Conn.,butfouryearsagoitfacedmanyofthesame
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessmayb
最新回复
(
0
)