首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列三重积分: (Ⅰ)I=xy2z3dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域; (Ⅱ)I=,y=0,z=0,x+z=围成; (Ⅲ)I=(1+x4)dV,其中Ω由曲面x2=y2+z2,x=1,x=2围成.
求下列三重积分: (Ⅰ)I=xy2z3dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域; (Ⅱ)I=,y=0,z=0,x+z=围成; (Ⅲ)I=(1+x4)dV,其中Ω由曲面x2=y2+z2,x=1,x=2围成.
admin
2018-11-21
61
问题
求下列三重积分:
(Ⅰ)I=
xy
2
z
3
dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域;
(Ⅱ)I=
,y=0,z=0,x+z=
围成;
(Ⅲ)I=
(1+x
4
)dV,其中Ω由曲面x
2
=y
2
+z
2
,x=1,x=2围成.
选项
答案
(Ⅰ)空间区域Ω的图形不太直观,但是,它在xOy半回上的投影区域D
xy
为由y=0,y=x及x=1所围成的三角形,即图9.54所示,并且Ω的下侧边界是z=0,上侧边界为z=xy.这些条件对确定积分限已足够.Ω={(x,y,z)|0≤z≤xy,(x,y)∈D,y},D
xy
:0≤x≤1,0≤y≤x. [*]dxdy∫
0
xy
xy
2
z
3
dz=∫
0
1
xdx∫
0
x
y
2
dy∫
0
xy
z
3
dz =[*]∫
0
1
xdx∫
0
x
y
2
z
4
|
0
xy
dy =[*]∫
0
1
x
5
dx∫
0
x
y
6
dy=[*]. (Ⅱ)Ω是柱形长条区域,上顶是平面x+z=[*],下底是Oxy平面,即z=0,侧面是柱面y=0,y=[*]与Oxy平面交于直线x=[*],于是 Ω={(x,y,z)|0≤z≤[*]一x,(x,y)∈D
xy
},D
xy
如图9.55. 也可看成Ω={(x,y,z)|0≤y≤[*],(x,y)∈D
xy
}.注意y=[*]与Ozx平面交于x=0,D
xy
如图9.56.因此有 [*] (Ⅲ)Ω是锥体(顶点是原点,对称轴是x轴)被平面x=1,x=2所截部分,被积函数只与x有关,x∈[1,2],与x轴垂直平面截Ω得圆域D(x),半径为x,面积为πx
2
,于是用先二后一(先yz后x)的积分顺序得 I=∫
1
2
dx[*](1+x
4
)dydz=∫
1
2
(1+x
4
)πx
2
dx =[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HZg4777K
0
考研数学一
相关试题推荐
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
已知曲面S:x2+2y2+3z2=1,y≥0,z≥0;区域D:x2+2y=1,x≥0,则().
曲线y=有()渐近线.
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分f(x,y,z)dydz=0.
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
求不定积分
随机试题
以下关于SQL视图的描述中,正确的是________。
完全禁食数日,蛋白质分解主要来自()
哪项不是急性盆腔炎的后遗症()
背景资料:陈村拦河闸设计过闸流量2000m3/s,河道两岸堤防级别为1级,在拦河闸工程建设中发生如下事件:事件一:招标人对主体工程施工标进行公开招标,招标人拟定的招标公告中有:①投标人须具备堤防工程专业承包一级资质,信誉佳,财务状况良好,类似工程经验
Gary,agray-hairedman,isclimbinguptooldOakHillCemetery.Henoticesatombwithanationalflagonitraiseshisbugle
下列有关法学的表述.正确的是()。
1927年,北京《顺天日报》评选“首届京剧旦角最佳演员”,其中被评为“四大旦角”的是:
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得∫0ξ(x)dx=ξf(ξ).
Writeanessayof160-200wordsbasedonthefollowingdrawing.Inyouressay,youshould1.describethedrawingbriefly,
下列关于计算机图形图像的描述中,不正确的是______。
最新回复
(
0
)