首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列三重积分: (Ⅰ)I=xy2z3dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域; (Ⅱ)I=,y=0,z=0,x+z=围成; (Ⅲ)I=(1+x4)dV,其中Ω由曲面x2=y2+z2,x=1,x=2围成.
求下列三重积分: (Ⅰ)I=xy2z3dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域; (Ⅱ)I=,y=0,z=0,x+z=围成; (Ⅲ)I=(1+x4)dV,其中Ω由曲面x2=y2+z2,x=1,x=2围成.
admin
2018-11-21
55
问题
求下列三重积分:
(Ⅰ)I=
xy
2
z
3
dV,其中Ω是由曲面z=xy,y=x,z=0,x=1所围成的区域;
(Ⅱ)I=
,y=0,z=0,x+z=
围成;
(Ⅲ)I=
(1+x
4
)dV,其中Ω由曲面x
2
=y
2
+z
2
,x=1,x=2围成.
选项
答案
(Ⅰ)空间区域Ω的图形不太直观,但是,它在xOy半回上的投影区域D
xy
为由y=0,y=x及x=1所围成的三角形,即图9.54所示,并且Ω的下侧边界是z=0,上侧边界为z=xy.这些条件对确定积分限已足够.Ω={(x,y,z)|0≤z≤xy,(x,y)∈D,y},D
xy
:0≤x≤1,0≤y≤x. [*]dxdy∫
0
xy
xy
2
z
3
dz=∫
0
1
xdx∫
0
x
y
2
dy∫
0
xy
z
3
dz =[*]∫
0
1
xdx∫
0
x
y
2
z
4
|
0
xy
dy =[*]∫
0
1
x
5
dx∫
0
x
y
6
dy=[*]. (Ⅱ)Ω是柱形长条区域,上顶是平面x+z=[*],下底是Oxy平面,即z=0,侧面是柱面y=0,y=[*]与Oxy平面交于直线x=[*],于是 Ω={(x,y,z)|0≤z≤[*]一x,(x,y)∈D
xy
},D
xy
如图9.55. 也可看成Ω={(x,y,z)|0≤y≤[*],(x,y)∈D
xy
}.注意y=[*]与Ozx平面交于x=0,D
xy
如图9.56.因此有 [*] (Ⅲ)Ω是锥体(顶点是原点,对称轴是x轴)被平面x=1,x=2所截部分,被积函数只与x有关,x∈[1,2],与x轴垂直平面截Ω得圆域D(x),半径为x,面积为πx
2
,于是用先二后一(先yz后x)的积分顺序得 I=∫
1
2
dx[*](1+x
4
)dydz=∫
1
2
(1+x
4
)πx
2
dx =[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HZg4777K
0
考研数学一
相关试题推荐
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
求曲线y=的一条切线l,使该曲线与切线l及直线x=0,x=2所围成的图形的面积最小.
曲线y=有()渐近线.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
交换积分次序=______。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设n阶矩阵A与B相似,E为n阶单位矩阵,则()
定积分=()
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
随机试题
海南杂忆茅盾我们到了那有名的“天涯海角”。原以为这个地方是一条陆地,突入海中,碧涛澎湃,前无去路。但是错了,完全不是那么一回事。所谓“天涯海角”就在公路旁边,相去二三十步。当然有海,就在岩石旁边,
如图所示,横线所指位置准确的解剖描述是
A、疱疹性口炎B、疱疹样口疮C、带状疱疹D、手-足-口病E、疱疹性咽峡炎损害沿三叉神经分支分布,单侧,不越过中线
双下肢对称性紫癜伴荨麻疹者常见于()
家用打蜡机用的抛光片,圆形,正中有小孔,由羊毛毡呢制成
20世纪70年代以来,世界证券市场出现了高度繁荣的局面形成了()的全新特征。
汽车贷款常用的还款方式不包括()。
论述组织教学过程的基本要素。
简要回答教师的法定权利。
A、Joanmayhavetakenawrongtrain.B、Joanwon’tcometotheconference.C、Joanwillmissthenextconference.D、Joanmaybela
最新回复
(
0
)