首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设an=∫0π/4tannxdx,对任意的参数λ,讨论级数an/nλ的敛散性,并证明你的结论.
设an=∫0π/4tannxdx,对任意的参数λ,讨论级数an/nλ的敛散性,并证明你的结论.
admin
2018-05-21
52
问题
设a
n
=∫
0
π/4
tan
n
xdx,对任意的参数λ,讨论级数
a
n
/n
λ
的敛散性,并证明你的结论.
选项
答案
由a
n
+a
n+2
=∫
0
π/4
sec
2
xtan
n
xdx=[*],a
n
+a
n-2
=∫
0
π/4
sec
2
xtan
n-2
xdx=[*],得 [*] (1)当λ>0时,因为级数[*]a
n
/n
λ
收敛; (2)当λ≤0时,因为级数[*]a
n
/
λ
发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/HZr4777K
0
考研数学一
相关试题推荐
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
求幂级数的收敛域及和函数。
设函数f(x)在[a,b]上连续,在(a,b)上二阶可导,且f(A)=0f(B)>0,f’+(A)<0。证明:(Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0;(Ⅱ)在(a,b)内至少存在一点η,使得f"(η)>0。
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次为α1,α2,α3,若P=(α1,2α3,一α2),则P-1AP=()
设z=xg(x+y)+yφ(xy),其中gφ、具有二阶连续导数,则=_________。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A,B是n阶可逆矩阵,满足AB=A+B,则下面命题中正确的个数是()①|A+B|=|A||B|②(AB)一1=B一1A一1③(A—E)x=0只有零解④B—E不可逆
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
设f(x,y)是R2上一个可微函数,且,其中,α为常数.试证明f(x,y)在R2上有最小值.
随机试题
某糖果厂生产两种糖果,A种糖果每箱获利润40元,B种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下袁为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12小时,烹调的设备至多能用30小时,包装的设备
竖井的井壁应是耐火极限不低于()的非燃烧体。
某农场拟于2006年初在某河流上游植树造林500公顷,需要各类投资共5000万元。农场将承包该林地并拟于2012年初择伐树木后,将林地无偿移交给地方政府。预计所伐木材销售净收入为每公顷12万元。由于流域水土得到保持,气候环境得到改善,预计流域内3万
社会主义核心价值体系是建设和谐文化的根本,它的基本内容包括()。
张某因犯罪被判处剥夺政治权利3年,在此期间,张某的下列行为中符合法律规定的是()。
党的十九大提出以党的政治建设为统领,全面推进党的政治建设、思想建设、组织建设、作风建设、纪律建设,把制度建设贯穿其中,并特别强调把党的政治建设摆在首位。党的政治建设的首要任务是()
嗅探器改变了网络接口的工作模式,使得网络接口____________。
有职工工资表(职工号、姓名、日期、基本工资、奖金、工资合计),其中“工资合计”等于同一行数据的“基本工资”与“奖金”之和,在职工工资表中插入一行数据时(设一次只插入一行数据)能实现自动计算“工资合计”列的值的代码是______。A)ALTERTABLE
下列叙述中正确的是
在标准ASCII编码表中,数字码、小写英文字母和大写英文字母的前后次序是()。
最新回复
(
0
)