首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题: ①AAT的行列式|AAT|≠0; ②AAT必与n阶单位矩阵等价; ③AAT必与一个对角矩阵相似; ④AAT必与n阶单位矩阵合同,其中正确的命题数为
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题: ①AAT的行列式|AAT|≠0; ②AAT必与n阶单位矩阵等价; ③AAT必与一个对角矩阵相似; ④AAT必与n阶单位矩阵合同,其中正确的命题数为
admin
2016-01-23
77
问题
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:
①AA
T
的行列式|AA
T
|≠0; ②AA
T
必与n阶单位矩阵等价;
③AA
T
必与一个对角矩阵相似; ④AA
T
必与n阶单位矩阵合同,其中正确的命题数为
选项
A、1
B、2
C、3
D、4
答案
D
解析
本题主要考查矩阵的三大关系一一等价、相似、合同,求解的关键是要清楚矩阵秩的结论r(A)=r(AA
T
)=r(A
T
A).
解:显然AA
T
为n阶矩阵.由条件可知r(AA
T
)=R(A)=n,故①,②正确.
由于AA
T
是实对称矩阵,所以必可相似对角化,从而③正确.
因AA
T
的秩为n,故二次型x
T
AA
T
x的秩为n,从而x
T
AA
T
x=(A
T
x)
T
(A
T
x)>0,
即x
T
AA
T
x是正定二次型,故AA
T
与n阶单位矩阵合同,④也正确.
转载请注明原文地址:https://kaotiyun.com/show/qxw4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为________.
设向量组α1,α2,α3为方程组AX=0的一个基础解系,则下列向量组中也是方程组AX=0的基础解系的是().
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导,证明:存在ξ∈(a,b),使得
设函数y=f(x)二阶可导,f’(x)≠0,且与x=ψ(y)互为反函数,求ψ"(y).
设f(x,y)在有界区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。
设在(-∞,+∞)内连续曲线y=f(x)关于点(a,0)(a≠0)对称,则积分∫a+1a-1f(x)dx=________。
反常积分∫—∞+∞sinx.e|x|dx
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
设曲线积分I=∮L2[xf(y)+g(y)]dx+[x2g(y)+2xy2-2xf(y)]dy=0.其中L为平面上任一闭曲线,函数f(y)与g(y)二阶可导,且f(0)=-1,g(0)=1.试求函数f(y)与g(y),并选择任意一条路径计算从点(0,0)到
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
随机试题
牙髓摘除术的适应证是
A.大环内酯类B.喹诺酮类抗菌药C.头孢菌素类D.青霉素E.氨基糖苷类187.支原体肺炎首社区获得性肺炎链球菌肺炎首选
新生儿,15d,足月顺产,出生体重3.1kg,母乳喂养。护士在进行新生儿访视时,其家长咨询预防小儿佝偻病的知识。家长发现小儿有下列哪项表现时应考虑佝偻病的早期症状
以下药物局部用药过多会引起新生儿出现全身性水肿的药物是()。
B市的京发公司与T市的蓟门公司签订了一份海鲜买卖合同,约定交货地在T市,并同时约定“涉及本合同的争议,提交S仲裁委员会仲裁”。京发公司收货后。认为海鲜等级未达到合同约定,遂向S仲裁委员会提起解除合同的仲裁申请,仲裁委员会受理了该案。在仲裁规则确定的期限内,
需求调节是调节供求关系的一种方式,它通过调节()使供求关系趋于平衡。
依法行政是行政法的基本原则,下面关于依法行政的内涵说法正确的是()。
很多艺术家在世的时候,其作品不被当时的社会所认可,直到他们去世很久,其艺术作品才被高度重视,在具备极高商业价值的同时,对艺术领域的拓展也具有重要意义。从上述论断可以推断出哪项结论?
下列说法正确的是()。
下列选项中不属于数据库管理系统的是()。
最新回复
(
0
)