首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β( )
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β( )
admin
2019-01-19
34
问题
若α
1
,α
2
线性无关,β是另外一个向量,则α
1
+β与α
2
+β( )
选项
A、线性无关。
B、线性相关。
C、既线性相关又线性无关。
D、不确定。
答案
D
解析
例如,令α
1
=(1,1),α
2
=(0,2),β=(一1,一1),则α
1
,α
2
线性无关,而α
1
+β=(0,0)与α
2
+β=(一l,1)线性相关。如果设β=(0,0),那么α
1
+β与α
2
+β却是线性无关的,故选D。
转载请注明原文地址:https://kaotiyun.com/show/HbP4777K
0
考研数学三
相关试题推荐
(07年)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fx(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为【】
(91年)对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则【】
(04年)设随机变量X服从参数为λ的指数分布,则P{X>}=_______.
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】
(09年)袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
设齐次线性方程组Am×nχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,其中χ=(χ1,χ2,…,χn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设B是元素全都为1的n阶方阵(n>1).证明:(E-B)-1=E-B.
一批矿砂的4个样品中镍含量测定为(%):3.25,3.26,3.24,3.25.设测定值总体服从正态分布,问在α=0.01下能否接受假设:这批矿砂镍含量的均值是3.26.(t0.995(3)=5.8409,下侧分位数)
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
随机试题
集整管理模式不是一成不变的,相反,它是永远在变化进取的,因为它是有机的,生就具有较大的包容性和可扩展性,具有强大生命力并不断长大发展着的管理模式。()
面部危险三角区疖的危险性在于()
某患者,女,30岁,症见经血非时而下,量多如崩,色淡质稀,神疲体倦,气短懒言,不思饮食,四肢不温,舌淡胖,苔薄白,脉缓弱。请回答下列问题:治疗方剂应选用
区域规划是按()对水资源开发利用和防治水害等进行总体部署。
甲公司从事水泥生产作业,其在外地设有一处分公司乙,并且已取得营业执照;2011年8月,因生产规模扩大,乙公司决定新招一批生产工人。随后乙公司在当地招聘了包括小王和小李在内的15名工人,9月1日开始工作。乙公司与应聘个人口头约定了工作内容和工资数额。10月初
根据合同法律制度的规定,下列有关保证责任诉讼时效的表述,正确的有()。
OnaclearmorninginearlyMay,BrianLathrop,aseniorengineerforVolkswagen’sElectronicsResearchLaboratory,wasinthed
计算机采用的主机电子器件的发展顺序是___________。
我们既要绿水青山,也要金山银山。宁要绿水青山,不要金山银山。......我们绝不能以牺牲生态环境为代价换取经济的一时发展。
Isitdifficultforyoutogetupinthemorning?Yes?ThenHiroyukiofJapanhasaspecialbedforyou.Hiroyuki’sbedwillget
最新回复
(
0
)