首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(88年)已给线性方程组 问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
(88年)已给线性方程组 问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
admin
2017-05-26
49
问题
(88年)已给线性方程组
问k
1
和k
2
各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
选项
答案
以A表示方程组的系数矩阵,以[A[*]B]表示增广矩阵.对增广矩阵[A[*]B]施行初等行变换: [*] 由此可知: (1)当k
1
≠2时,r(A)=r[A[*]B]=4,方程组有唯一解; (2)当k
1
=2时,有 [*] 所以,当k
1
=2且k
2
≠1时,则r(A)=3,r[A[*]B]=4,方程组无解; 当k
1
=2且k
2
=1时,则r(A)=r[A[*]B]=3<4,方程组有无穷多解,此时有 [*] 已将增广矩阵化成了简化行阶梯阵.选取χ
1
,χ
2
,χ
4
为约束未知量,则χ
3
为自由未知量,于是得方程组的用自由未知量表示的通解: [*] 取χ
3
=c(c为任意常数),得方程组的一般解: χ
1
=-8,χ
2
=3—2c,χ
3
=c,χ
4
=2(c为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VtH4777K
0
考研数学三
相关试题推荐
微分方程y’+yianx=cosx的通解为y=_____.
如果P(AB)=0,则下列结论中成立的是().
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
设矩阵,则A3的秩为__________.
已知a1=(1,4,0,2)T,a2=(2,7,1,3)Ta3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示式.
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
随机试题
中国共产党在抗日民族统一战线中必须坚持独立自主原则的实质是()
A.普萘洛尔B.硝苯地平C.二者都可D.二者都不可
下列疾病中骨髓巨核细胞明显减少的是
具有活血平肝功能的药是具有补气健脾,安神益智的功能的药是
纳税人在开采主矿产品的过程中伴采的其他应税矿产品,凡未单独规定适用税额的,一律按主矿产品或视同主矿产品税目征收资源税。()
以下哪些选项是近代警察与古代警察的区别?( )
(2009年单选18)甲盗割正在使用中的通讯电缆致通讯中断,既符合盗窃罪的犯罪构成,也符合破坏公用电信设施罪的犯罪构成。甲的犯罪属于()。
欧洲新教育运动
HowtoapproachReadingTestPartThree•inthispartoftheReadingTestyoureadalongertextandanswersixquestions.•Fi
Nobodycanbesetinmotionwithoutaforce______onit.
最新回复
(
0
)