首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
admin
2016-07-22
30
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件为 ( )
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表出
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表出
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=[α
1
,α
2
,…,α
m
]与矩阵B=[β
1
,β
2
,…,β
m
]等价
答案
D
解析
A=[α
1
,α
2
,…,α
m
],β=[β
1
,β
2
,…,β
n
]等价
r(α
1
,α
m
)=r(β
1
,…,β
m
)
β
1
,β
2
,…,β
m
线性无关(已知α
1
,α
2
,…,α
m
线性无关时).
转载请注明原文地址:https://kaotiyun.com/show/Hcw4777K
0
考研数学一
相关试题推荐
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
求极限
求极限
已知y”+(x+3e2y)(y’)3=0(y’≠0),当把y视为自变量,而把x视为因变量时:求方程化成的新形式;
过曲面=4上任一点的切平面在三个坐标轴上的截距的平方和为().
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
在家庭与婚姻的理论解释中,强调家庭中两性以不同的方式彼此竞争,在这一过程中,有些家庭成员比另一些人从家庭中的获益要多,该理论是()
请以“城市特色文化”为主题讲一个故事,要求包括“群众渴求”“城市景观”“文化福利”“千篇一律”“商业开发”五个词,词序不限。
医院感染漏报调查样本量应不少于年监测病人数的()
有腐蚀性的药物是
某一符合米一曼氏方程的酶,当[S]=2Km时,其反应速度v等于
广义知识产权主要为()的保护知识产权的国际公约所界定。
对法院作出的下列裁定,当事人不可以提起上诉的是()。
发达国家中冠心病的发病率大约是发展中国家的三倍。有人认为,这主要归咎于发达国家中人们的高脂肪、高蛋白、高热量的食物摄入。相对来说,发展中国家较少有人具备生这种“富贵病”的条件。其实,这种看法很难成立。因为,目前发达国家的人均寿命高于70岁,而发展中国家的
()是按80/20规则分类的供应商分类。
下面不属于软件需求规格说明书内容的是()。
最新回复
(
0
)